2,075 research outputs found

    Anisotropy, disorder, and superconductivity in CeCu2Si2 under high pressure

    Full text link
    Resistivity measurements were carried out up to 8 GPa on single crystal and polycrystalline samples of CeCu2Si2 from differing sources in the homogeneity range. The anisotropic response to current direction and small uniaxial stresses was explored, taking advantage of the quasi-hydrostatic environment of the Bridgman anvil cell. It was found that both the superconducting transition temperature Tc and the normal state properties are very sensitive to uniaxial stress, which leads to a shift of the valence instability pressure Pv and a small but significant change in Tc for different orientations with respect to the tetragonal c-axis. Coexistence of superconductivity and residual resistivity close to the Ioffe-Regel limit around 5 GPa provides a compelling argument for the existence of a valence-fluctuation mediated pairing interaction at high pressure in CeCu2Si2.Comment: 12 pages, 7 figure

    Non-luminescent disexcitation of F-center pairs by exchange-softened vibrational modes

    Get PDF
    The non-luminescent and spin-dependent disexcitation process observed in F-center pairs in alkali halides at low temperature is explained by a covalent bond within the pair. Exchange effects give a negative contribution to the lattice potential energy. If the pair separataion is small, local modes become unstable and spontaneous lattice distortions bring back the pair in its ground state

    Effect of pressure cycling on Iron: Signatures of an electronic instability and unconventional superconductivity

    Get PDF
    High pressure electrical resistivity and x-ray diffraction experiments have been performed on Fe single crystals. The crystallographic investigation provides direct evidence that in the martensitic bcchcpbcc \rightarrow hcp transition at 14 GPa the {110}bcc\lbrace 110\rbrace_{bcc} become the {002}hcp\lbrace 002\rbrace_{hcp} directions. During a pressure cycle, resistivity shows a broad hysteresis of 6.5 GPa, whereas superconductivity, observed between 13 and 31 GPa, remains unaffected. Upon increasing pressure an electronic instability, probably a quantum critical point, is observed at around 19 GPa and, close to this pressure, the superconducting TcT_{c} and the isothermal resistivity (0<T<3000<T<300\,K) attain maximum values. In the superconducting pressure domain, the exponent n=5/3n = 5/3 of the temperature power law of resistivity and its prefactor, which mimics TcT_{c}, indicate that ferromagnetic fluctuations may provide the glue for the Cooper pairs, yielding unconventional superconductivity

    From spin-Peierls to superconductivity: (TMTTF)_2PF_6 under high pressure

    Full text link
    The nature of the attractive electron-electron interaction, leading to the formation of Cooper-pairs in unconventional superconductors has still to be fully understood and is subject to intensive research. Here we show that the sequence spin-Peierls, antiferromagnetism, superconductivity observed in (TMTTF)_2PF_6 under pressure makes the (TM)_2X phase diagram universal. We argue that the suppression of the spin-Peierls transition under pressure, the close vicinity of antiferromagnetic and superconducting phases at high pressure as well as the existence of critical antiferromagnetic fluctuations above T_c strongly support the intriguing possibility that the interchain exchange of antiferromagnetic fluctuations provides the pairing mechanism required for bound charge carriers.Comment: 4 pages, revtex, 4 figures (jpeg,eps,png

    EPR optical detection of F centre pairs in alkali halides. - I : Pumping cycle kinetics and characteristics of the resonances

    Get PDF
    The EPR of F centres in the ground and excited states was optically detected in the following alkali halide crystals: NaCl, KF, KCl, KBr, KI, RbBr, and RbI. A decrease of the radiative quantum efficiency of the F centre luminescence was observed when microwave transitions were induced between the spin levels. The mechanism responsible for this effect was an electronic tunnelling through the crystal field potential; the electron in the relaxed excited state of an F centre (F~*) is transferred nonradiatively to another nearby F centre in its ground state (F0), and leads to the momentary formation of an ƒ¿ and an F\u27 centre. Such a process is a function of the total spin of the F~*-F0 pair. The role played by the paired centres was confirmed by measurements at different F centre concentration. Moreover, at high optical excitation pumping rates, the population of the intermediate complexes (F\u27-ƒ¿) is large enough to allow an estimation of the rate of the reverse process F\u27 + ƒ¿ \u27¨ F0 + F0

    High-pressure transport properties of CeRu_2Ge_2

    Full text link
    The pressure-induced changes in the temperature-dependent thermopower S(T) and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the single-site Anderson model. The Ce-ions are treated as impurities and the coherent scattering on different Ce-sites is neglected. Changing the hybridisation \Gamma between the 4f-states and the conduction band accounts for the pressure effect. The transport coefficients are calculated in the non-crossing approximation above the phase boundary line. The theoretical S(T) and \rho(T) curves show many features of the experimental data. The seemingly complicated temperature dependence of S(T) and \rho(T), and their evolution as a function of pressure, is related to the crossovers between various fixed points of the model.Comment: 9 pages, 10 figure

    Optical and ESR studies on an IR absorption band in CsI:Na after x-ray irradiation

    Get PDF
    The nature of the defect giving rise to a near IR absorption band (717 nm)in x-irradiated CaI:Na by measuring its linear dichroism, its magnetic CD and its change due to the resonance microwave was studied. The defect (g|| = 1.96, g\u27Û = 2.23 with axis near 100\u27r) involves a Na+ ion and an excess electron

    Signatures of valence fluctuations in CeCu2Si2 under high pressure

    Full text link
    Simultaneous resistivity and a.c.-specific heat measurements have been performed under pressure on single crystalline CeCu2Si2 to over 6 GPa in a hydrostatic helium pressure medium. A series of anomalies were observed around the pressure coinciding with a maximum in the superconducting critical temperature, TcmaxT_c^{max}. These anomalies can be linked with an abrupt change of the Ce valence, and suggest a second quantum critical point at a pressure Pv4.5P_v \simeq 4.5 GPa, where critical valence fluctuations provide the superconducting pairing mechanism, as opposed to spin fluctuations at ambient pressure. Such a valence instability, and associated superconductivity, is predicted by an extended Anderson lattice model with Coulomb repulsion between the conduction and f-electrons. We explain the T-linear resistivity found at PvP_v in this picture, while other anomalies found around PvP_v can be qualitatively understood using the same model.Comment: Submitted to Phys. Rev.

    fuzzySim: applying fuzzy logic to binary similarity indices in ecology

    Get PDF
    Binary similarity indices are widely used in ecology, for example for detecting associations between species occurrence patterns, comparing regional and temporal species assemblages, and assessing beta diversity patterns, including spatial and temporal species loss and turnover. Such indices have widespread applications in biogeography, global change biology and biodiversity conservation. Similarity indices are commonly calculated upon binary presence/absence (or sometimes modelled suitable/unsuitable) data, which are generally incomplete and more categorical than their underlying natural patterns. Probable false absences are disregarded, amplifying the effects of data deficiencies and the scale dependence of the results. Fuzzy occurrence data, with a degree of uncertainty attributed to localities where presence or absence cannot be safely assigned, could better reflect species distributions, compensating for incomplete knowledge and methodological errors. Similarity indices would therefore also benefit from accommodating such fuzzy data directly. This study proposes fuzzy versions of the binary similarity indices most commonly used in ecology, so that they can be directly applied to continuous (fuzzy) rather than binary occurrence values, thus producing more realistic similarity assessments. Fuzzy occurrence can be obtained with several methods, some of which are also provided. The procedure is robust to data source disparities, gaps or other errors in species occurrence records, even for restricted species for which slight inaccuracies can affect substantial parts of their range. The method is implemented in a free and open-source software package, fuzzySim, which is available for the R statistical software and under implementation for the QGIS geographic information system. It is provided with sample data and an illustrated tutorial suitable for non-experienced users
    corecore