30 research outputs found
Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice.
Respiratory syncytial virus (RSV), an important pathogen of the lower respiratory tract, is responsible for severe illness both in new born and young children and in elderly people. Due to complications associated with the use of the early developed vaccines, there is still a need for an effective vaccine against RSV. Most pathogens enter the body via mucosal surfaces and therefore vaccine delivery via routes such as the nasal, may well prove to be superior in inducing protective immune responses against respiratory viruses, since both local and systemic immunity can be induced by nasal immunisation. Previously we have shown that intradermal immunisation of a plasmid DNA encoding the CTL epitope from the M2 protein of RSV induced protective CTL responses. In the present study, the mucosal delivery of plasmid DNA formulated with chitosan has been investigated. Chitosan is a polysachharide consisting of copolymers of N-acetylglucosamine and glucosamine that is derived from chitin, a material found in the shells of crustacea. Intranasal immunisation with plasmid DNA formulated with chitosan induced peptide- and virus-specific CTL responses in BALB/c mice that were comparable to those induced via intradermal immunisation. Following RSV challenge of chitosan/DNA immunised mice, a significant reduction (P<0.001) in the virus load was observed in the lungs of immunised mice compared to that in the control group. These results indicate the potential of immunisation with chitosan-formulated epitope-based vaccines via the intranasal route
A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 response following nasal delivery
The development of new generation vaccines against diphtheria is dependent on the identification of antigens and routes of immunization that are capable of stimulating immune responses similar to, or greater than, those obtained with the parenterally-delivered toxoid vaccine, while reducing the adverse effects that have been associated with the traditional vaccine. In this study, we examined the cellular and humoral immune responses in mice generated after both parenteral and mucosal immunizations with cross-reacting material (CRM(197)) of diphtheria toxin. We found that both native and mildly formaldehyde-treated CRM(197) and conventional diphtheria toxoid (DT) induced mixed Th1/Th2 responses and similar levels of anti-DT serum IgG following parenteral immunization. In contrast, CRM(197) preparations were poorly immunogenic when administered intranasally in solution. However, formulation of the antigens with chitosan significantly enhanced their immunogenicity, inducing high levels of antigen-specific IgG, secretory IgA, toxin-neutralizing antibodies and T cell responses, predominately of Th2 subtype. Furthermore, intranasal immunization with CRM(197) and chitosan induced protective antibodies against the toxin in a guinea pig passive challenge model. We also found that priming parenterally with DT in alum and boosting intranasally with CRM(197) was a very effective method of immunization in mice, capable of inducing high levels of anti-DT IgG and neutralizing antibodies in the serum and secretory IgA in the respiratory tract. Our findings suggest that boosting intranasally with CRM(197) antigen may be very effective in adolescents or adults who have previously been parenterally immunized with a conventional diphtheria toxoid vaccine
Protective levels of diphtheria-neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immunoglobulin a
Subunit intranasal vaccines offer the prospect of inducing combined systemic-mucosal immunity against mucosally transmitted infections such as human immunodeficiency virus. However, although human studies have demonstrated the induction of active immunity, secretory immunoglobulin A (sIgA) responses are variable, and no study has demonstrated protection by accepted vaccine-licensing criteria as measured by direct toxin-neutralizing activity. Using the genetically inactivated mutant diphtheria toxoid CRM(197) in a bioadhesive polycationic polysaccharide chitosan delivery system, we found that a single nasal immunization was well tolerated and boosted antitoxin neutralizing activity in healthy volunteers, which could be further boosted by a second immunization. The neutralizing activity far exceeded accepted protective levels and was equivalent to that induced by standard intramuscular vaccine and significantly greater than intranasal immunization with CRM(197) in the absence of chitosan. A striking but unexpected observation was that although unilateral intranasal immunization induced circulating antitoxin antibody-secreting cells, a nasal antitoxin sIgA response was seen only after the second immunization and only in the vaccinated nostril. If these data are reproduced in larger studies, an intranasal diphtheria vaccine based on CRM(197)-chitosan could be rapidly licensed for human use. However, a restricted sIgA response suggests that care must be taken in the priming-boosting strategy and clinical sampling techniques when evaluating such vaccines for the induction of local mucosal immunity