15 research outputs found

    Increasing protected area coverage mitigates climate-driven community changes

    Get PDF
    Climate change has ubiquitous impacts on ecosystems and threatens biodiversity globally. One of the most recognized impacts are redistributions of species, a process which can be hindered by habitat degradation. Protected areas (PAs) have been shown to be beneficial for preserving and reallocating species occurrences under climate change. Yet, studies investigating effects of PA networks on species' range shifts under climate change remain scarce. In theory, a well-connected network of PAs should promote population persistence under climate change and habitat degradation. To study this, we evaluated the effects of PA coverage on avian communities in Finland between two study periods of 1980-1999 and 2000-2015. Climate-driven community impacts were investigated by using community temperature index (CTI). We used linear models to study the association of PA coverage and the CTI changes in southern, central and northern Finland. In northern and central Finland, higher PA coverage was associated with lower changes in CTI and 45% PA coverage in northern and 13% in central Finland corresponded with complete mitigation of CTI increase. These results indicate that higher PA coverage strongly increases community resilience to warming climate. However a similar association between PA coverage and changes in CTI was not apparent in southern Finland. The PA coverage in southern Finland was much lower than in the two other sections and thus, may be too sparse to favour community resilience against climate change. The results provide empirical evidence for the international need to rapidly expand PA networks and halt biodiversity loss.Peer reviewe

    Kapealatvainen kuusi paperipuuksi harventamatta ja lyhyellä kiertoajalla?

    No full text

    Increasing survival and growth of Scots pine seedlings with selection based on autumn coloration

    Get PDF
    This study evaluates the possibility of using autumn coloration of young Scots pine (Pinus sylvestris L.) seedlings as an indicator of adaptation to harsh climate conditions. One-year old seedlings from natural stands with different origins and seed orchards were classified as “red/reddish” and “green” based on the needle color after artificially increased night length in nursery and then measured after 14 years in field trials. In almost all the studied groups seedlings classified as “red/reddish” had significantly higher survival rate than seedlings classified as “green”. The survival of “red/reddish” was 14.2% higher than “green” among natural stand seed material and 56.2% among seed orchard material. During the study period the survival difference between “red/reddish” and “green” seedlings tended to increase. The seedling color had limited connection with the height growth, even though the trees classified as “red/reddish” were slightly taller than those classified as “green”. However, the total productivity over all field trials, described here as a heightsum, of “red/reddish” trees was 15% higher than productivity of “green” trees from natural stand material, and 61% higher than those from seed orchard material. It seems that controlled selection based on autumn color can be utilized within seed crops of different types with the aim to increase the adaptability of seed material to different environmental conditions.</ja:p

    Differences in growth and wood properties between narrow and normal crowned types of Norway spruce grown at narrow spacing in Southern Finland

    Get PDF
    In recent years there has been increased interest in the so called narrow crowned Norway spruce (Picea abies f. pendula), which is a rare mutant of Norway spruce (Picea abies (L.) Karsten), as a suitable wood raw material source for pulp and paper production. This is because it is less sensitive to competition than the normal crowned Norway spruce, and thus, could be more productive especially at dense spacing. In the above context, we investigated how the growth and yield (such as height, diameter, stem volume and ring width) in addition to wood density traits and fibre properties (such as wood density, fibre length and width, cell wall thickness and fibre coarseness) were affected in trees from 9 full-sib families representing narrow crowned Norway spruce grown at narrow spacing of 1 m 1 m in Southern Finland. For comparison, we used normal crowned Norway spruce trees from 6 breeding regions. We found that, compared to growth and yield traits, wood density traits and fibre properties showed, on average, lower phenotypic variations. In addition, these variations were smaller for narrow crowned families than for normal crowned genetic entries. Narrow crowned families also showed, on average, higher growth and yield and fibre length, but lower wood density. Moreover, the phenotypic correlations between growth, yield, wood density traits and fibre properties, ranged, on average, from moderate (narrow crowned) to high (normal crowned). As a whole, the growth and wood properties of narrow crowned families were found to be less sensitive to tree competition than the normal crowned genetic entries used as a comparison.</ja:p

    Differences in fibre properties in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites

    Get PDF
    In forest breeding, stem volume growth and sawn timber quality indicators have been used as the most important selection traits for Scots pine, whereas less attention has been given to characteristics such as fibre properties. In the above context, we investigated the differences in fibre properties (i.e. fibre length, fibre width and coarseness) in 20 year old Scots pine (Pinus sylvestris L.) genetic entries as affected by spacing and site, but also the phenotypic correlations between fibre properties, yield and wood density. The study was based on materials harvested from 10 genetic entries grown in a spacing trial (site 1) in central Finland, with a current stand density of 2000 (spacing 1), 2000–2500 (spacing 2) and 4000 trees/ha (spacing 3). In order to study the effects of site, we harvested additional material (4 of 7 genetic entries same as on site 1) from a trial located in southern Finland with a corresponding stand density of 2000 trees/ha (site 2). On site 1, spacing 1 and 3, all average values for analysed fibre properties were similar. In spacing 2 average values were slightly higher. On site 2, the average values for different fibre properties were similar compared to the corresponding spacing 1 on site 1. Spacing affected (p &lt; 0.05) all average fibre properties on site 1; as did also site, when comparing same genetic entries grown on both sites. Regardless of spacing and site, the phenotypic correlations between average fibre length, fibre width and coarseness showed, on average, moderate to strong correlation (p &lt; 0.05). Fibre width showed, in general, low and positive phenotypic correlation with diameter at breast height, stem volume and wood density on site 1. However, as a whole, the ranking of genetic entries changed depending on the trait and spacing considered. Thus, no overall ranking between genetic entries was possible.</ja:p

    Latitudinal variation in seed predation correlates with latitudinal variation in seed defensive and nutritional traits in a widespread oak species

    No full text
    Background and Aims Classic theory on geographical gradients in plant-herbivore interactions assumes that herbivore pressure and plant defences increase towards warmer and more stable climates found at lower latitudes. However, the generality of these expectations has been recently called into question by conflicting empirical evidence. One possible explanation for this ambiguity is that most studies have reported on patterns of either herbivory or plant defences whereas few have measured both, thus preventing a full understanding of the implications of observed patterns for plant-herbivore interactions. In addition, studies have typically not measured climatic factors affecting plant-herbivore interactions, despite their expected influence on plant and herbivore traits.Methods Here we tested for latitudinal variation in insect seed predation and seed traits putatively associated with insect attack across 36 Quercus robur populations distributed along a 20 degrees latitudinal gradient. We then further investigated the associations between climatic factors, seed traits and seed predation to test for climate-based mechanisms of latitudinal variation in seed predation.Key Results We found strong but contrasting latitudinal clines in seed predation and seed traits, whereby seed predation increased whereas seed phenolics and phosphorus decreased towards lower latitudes. We also found a strong direct association between temperature and seed predation, with the latter increasing towards warmer climates. In addition, temperature was negatively associated with seed traits, with populations at warmer sites having lower levels of total phenolics and phosphorus. In turn, these negative associations between temperature and seed traits led to a positive indirect association between temperature and seed predation.Conclusions These results help unravel how plant-herbivore interactions play out along latitudinal gradients and expose the role of climate in driving these outcomes through its dual effects on plant defences and herbivores. Accordingly, this emphasizes the need to account for abiotic variation while testing concurrently for latitudinal variation in plant traits and herbivore pressure
    corecore