30 research outputs found

    MicroRNAs and the DNA damage response: Relevance for cancer and cancer therapy

    Get PDF

    MicroRNAs and the DNA damage response: Relevance for cancer and cancer therapy

    Get PDF

    MicroRNAs and the DNA damage response: Relevance for cancer and anticancer therapy

    Get PDF
    Most cellular functions are carried out by proteins, macromolecules composed of chains of amino acids. The information needed to generate these proteins is encoded in the DNA (Deoxyribonucleic Acid) and organized in transcriptional units called ‘genes’. In order to manufacture a protein, the gene is first transcribed into ‘messenger’ Ribonucleic Acid (mRNA), which is translated into protein

    Cell-type-specific role of CHK2 in mediating DNA damage-induced G2 cell cycle arrest

    Get PDF
    Cancer is a life-threatening disease that affects one in three people. Although most cases are sporadic, cancer risk can be increased by genetic factors. It remains unknown why certain genes predispose for specific forms of cancer only, such as checkpoint protein 2 (CHK2), in which gene mutations convey up to twofold higher risk for breast cancer but do not increase lung cancer risk. We have investigated the role of CHK2 and the related kinase checkpoint protein 1 (CHK1) in cell cycle regulation in primary breast and lung primary epithelial cells. At the molecular level, CHK1 activity was higher in lung cells, whereas CHK2 was more active in breast cells. Inhibition of CHK1 profoundly disrupted the cell cycle profile in both lung and breast cells, whereas breast cells were more sensitive toward inhibition of CHK2. Finally, we provide evidence that breast cells require CHK2 to induce a G2–M cell cycle arrest in response of DNA damage, whereas lung cells can partially compensate for the loss of CHK2. Our results provide an explanation as to why CHK2 germline mutations predispose for breast cancer but not for lung cancer

    Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    Get PDF
    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.—Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway

    Get PDF
    Background: Drug resistance hampers the efficient treatment of malignancies, including advanced stage ovarian cancer, which has a 5-year survival rate of only 30 %. The molecular processes underlying resistance have been extensively studied, however, not much is known about the involvement of microRNAs. Methods: Differentially expressed microRNAs between cisplatin sensitive and resistant cancer cell line pairs were determined using microarrays. Mimics were used to study the role of microRNAs in drug sensitivity of ovarian cancer cell lines and patient derived tumor cells. Luciferase reporter constructs were used to establish regulation of target genes by microRNAs. Results: MiR-634 downregulation was associated with cisplatin resistance. Overexpression of miR-634 affected cell cycle progression and enhanced apoptosis in ovarian cancer cells. miR-634 resensitized resistant ovarian cancer cell lines and patient derived drug resistant tumor cells to cisplatin. Similarly, miR-634 enhanced the response to carboplatin and doxorubicin, but not to paclitaxel. The cell cycle regulator CCND1, and Ras-MAPK pathway components GRB2, ERK2 and RSK2 were directly repressed by miR-634 overexpression. Repression of the Ras-MAPK pathway using a MEK inhibitor phenocopied the miR-634 effects on viability and chemosensitivity. Conclusion:miR-634 levels determine chemosensitivity in ovarian cancer cells. We identify miR-634 as a therapeutic candidate to resensitize chemotherapy resistant ovarian tumors

    Нейроендокринний супровід поліваріантних ефектів біоактивної води Нафтуся на рівень хронічного стресу у жінок з різним оваріальним статусом

    Get PDF
    Проанализированы изменения нейроэндокринных показателен, сопутствующие поливариантным эффектам биоактивной воды Нафтуся курорта Трускавец на уровень хронического стресса у женщин детородного возраста с различным овариальным статусом. Обнаружена значительная (R=0,59) каноническая корреляционная связь между динамикой нейро-гормонального индекса стресса, с одной стороны, и вегетативной реактивности, лютеинизирующего гормона, тиреотропного гормона, тироксина и прогестерона - с другой стороны.The changes in neuroendocrine parameters, concomitant multivariate effects of bioactive water Naftussya spa Truskavets to the level of chronic stress in women of childbearing age with different ovarian status. A significant (R=0,59) canonical correlation between the dynamics of the neuro-hormonal index of stress, on the one hand, and autonomic reactivity, luteinizing hormone, thyroid-stimulating hormone, thyroxine and progesterone - the other side

    MicroRNAs as possible indicators of drug sensitivity in breast cancer cell lines

    Get PDF
    MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited number of relatively small scale studies comprising few cell lines and/or drugs have been performed. To obtain a broader view on miRNAs and their association with drug response, we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36 breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs were associated with miRNA expression data of the same breast cancer cell lines. Since molecular subtype of the breast cancer cell lines is considered a confounding factor in drug association studies, multivariate analysis taking subtype into account was performed on significant miRNA-drug associations which retained 13 associations. These associations consisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Paclitaxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsalet-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitivity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was performed to reveal biological roles, aiding to find a potential mechanistic link for the observed associations with drug response. By doing so hsa-miR-187-5p was linked to the cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclusion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug resistance and that pathway analyses can provide additional information in this contex

    MiRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs

    Get PDF
    Introduction: Breast cancer is a genetically and phenotypically complex disease. To understand the role of miRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer cell lines to identify miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations. Methods: Using a microarray carrying LNA™ modified oligonucleotide capture probes), expression levels of 725 human miRNAs were measured in 51 breast cancer cell lines. Differential miRNA expression was explored by unsupervised cluster analysis and was then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. Results: Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 breast cancer cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of breast cancer cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group, 39 miRNAs were associated with ERBB2 overexpression and 24 with E-cadherin gene mutations, which are frequent in this subtype of breast cancer cell lines. In contrast, 31 miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in breast cancer cell lines that are not of luminal origin. Thirty miRNAs were associated with p16INK4 status while only a fe
    corecore