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Abstract
Cancer is a life-threatening disease that affects one in three people. Although most cases are sporadic, cancer risk can
be increased by genetic factors. It remains unknown why certain genes predispose for specific forms of cancer only,
such as checkpoint protein 2 (CHK2), in which gene mutations convey up to twofold higher risk for breast cancer but
do not increase lung cancer risk. We have investigated the role of CHK2 and the related kinase checkpoint protein 1
(CHK1) in cell cycle regulation in primary breast and lung primary epithelial cells. At the molecular level, CHK1 activity
was higher in lung cells, whereas CHK2 was more active in breast cells. Inhibition of CHK1 profoundly disrupted the
cell cycle profile in both lung and breast cells, whereas breast cells were more sensitive toward inhibition of CHK2.
Finally, we provide evidence that breast cells require CHK2 to induce a G2–M cell cycle arrest in response of DNA
damage, whereas lung cells can partially compensate for the loss of CHK2. Our results provide an explanation as to
why CHK2 germline mutations predispose for breast cancer but not for lung cancer.

Introduction
Cancer is a disease that can arise in virtually any tissue.

Most cases are the result of mutations that occur by
chance. However, germline variants can affect cancer risk
too. Many cancer predisposition genes (CPGs) have key
roles in DNA repair, cell cycle control, and cell survival
pathways, which are necessary to maintain genomic
integrity. Surprisingly, despite their role in basic cellular
programs, CPGs appear to affect cancer development
across tissues differently. For instance, mutations of the
DNA repair genes breast cancer protein 1 (BRCA1) and 2
(BRCA2) strongly predispose for breast and ovarian can-
cer, whereas germline mutations in the DNA repair genes
MSH2, MSH6, and MLH1 are associated with hereditary
nonpolyposis colon cancer.
Why mutations in DNA repair genes predispose for

specific cancer types is an outstanding mystery. Since

many breast CPGs are involved in the repair of DNA
double-strand breaks (DSBs)1, it has been proposed that
DSB repair is particularly important in breast cells. For
instance, there are indications that estrogen metabolism
causes DSBs2,3. In line with this, we recently showed that
the ataxia-telangiectasia mutated kinase (ATM)-check-
point protein 2 (CHK2) pathway, which is activated in
response to DNA DSBs, is more active in primary breast
than in lung cells4. Interestingly, both ATM and CHK2
germline mutations predispose for breast cancer5,6.
However, DNA repair proteins may contribute to breast

cancer risk in additional ways. For instance, mutations in
BRCA1, which regulates many processes, confer a 10–20%
higher risk than BRCA2 mutations, which functions
exclusively in DSB repair7,8. In addition, BRCA1 mutation
carriers develop breast cancer at a younger age than
BRCA2 mutation carriers9. Both BRCA1 and CHK2 play
roles in cell cycle control10,11. Since a dysregulated cell
cycle can lead to genetic errors and genomic instability,
uncontrolled cell division is one of the hallmarks of can-
cer12. It is therefore possible that mutations in BRCA1 and
CHK2 contribute to cancer development by deregulation
of the cell cycle.
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To understand differences in tissue-specific cancer risk,
we focused on primary breast and lung cells for two
reasons. First, breast and lung cancer are among the most
common kinds of cancer, suggesting that they have a high
cancer risk13. Second, several breast CPGs are known,
whereas the genetic component of lung tumorigenesis
appears to be very small14. We observed that breast and
lung cells have a different cell cycle distribution, which is
reflected in differential CHK1 and CHK2 activity. We
provide evidence that breast cells depend on CHK2 to
induce a G2 cell cycle arrest in response to DSBs, whereas
lung cells appear to have compensatory mechanisms.
These findings may help to explain why CHK2 germline
mutations predispose for breast cancer but not for lung
cancer.

Results
CHK1 and CHK2 regulate the cell cycle in primary breast
and lung cells differently
We previously observed that the functionally related

CHK1 and CHK2 play tissue-specific roles in the DNA
damage response in primary breast and lung cells4.
Interestingly, CHK1 and CHK2 also play roles in cell cycle
regulation: CHK1 is required for checkpoints throughout
the cell cycle, whereas CHK2 is mostly active during the
G1 phase. We therefore set out to compare the cell cycle
profile of breast and lung primary cells.
Both primary breast and lung cells are slowly cycling,

with population doubling times of 64 and 42 h approxi-
mately4. Consistent with the slow population doubling
times, the majority of these cells were in G0–G1 phase
(breast cells: 55%, lung cells: 65%, Fig. 1a). Remarkably,
the fraction of G2–M phase cells appeared to be higher in
breast than in lung cells, which may reflect differences in
cell cycle regulation.
We next measured total and active CHK1 and CHK2 in

breast and lung cells. Whereas total CHK1 and CHK2 had
similar expression levels (Fig. 1b, Supplementary Fig. 1),
active CHK1 levels were higher in primary lung cells,
whereas CHK2 activity seemed to be higher in breast cells.
To investigate if CHK1 and CHK2 play different roles in

breast and lung cells, we tested the effect of specific
inhibitors on the cell cycle. CHK1 inhibition distorted the
cell cycle profile of both cell types, dramatically altering
the fraction of cells in G0–G1, S, and G2–M phase
(Fig. 1c). CHK2 inhibition led to a loss of active S phase
cells in both breast and lung cells. In addition, the per-
centage of cells in G2–M phase was increased in CHK2-
inhibited breast cells, but this fraction was not changed in
CHK2-inhibited lung cells. Instead, CHK2-inhibited lung
cells displayed a small increase in the fraction of
G0–G1 cells. This indicates that CHK2 is required to
induce a G1–S phase checkpoint in primary breast cells
but not in primary lung cells.

Although CHK1 and CHK2 can both induce cell cycle
checkpoints, CHK1 is considered to have a stronger
inhibitory effect on the activity of cell division control
protein 2 (CDC2)15, whereas CHK2 is thought to have a
larger role in inducing the expression of the G1–S tran-
sition inhibitor P21 (Fig. 1d)16. In agreement with an
increased CHK1 activity in lung cells, inhibitory phos-
phorylation of CDC2 appeared to be higher. In contrast,
levels of P21 were higher in breast cells, which may reflect
increased CHK2 signaling (Fig. 1e).
These results suggest that the differential activity of

CHK1 and CHK2 in primary breast and lung cells affects
cell cycle regulation.

DNA damage induces a G2 arrest in CHK2-inhibited lung
cells but not in breast cells
CHK1 and CHK2 are known to play key roles in linking

DNA damage signaling to cell cycle control. We won-
dered whether the role of CHK1 and CHK2 in inducing a
DNA damage cell cycle checkpoint was different in both
cell types. To test this, we made use of the DNA DSB-
inducing agent doxorubicin, which is known to induce a
G2–M arrest17.
To measure the effect of DNA damage, primary breast

and lung cells were treated with 0.2 or 1 µM doxorubicin,
respectively, as these doses give rise to equal intracellular
doxorubicin concentrations4 and activate CHK1 and
CHK2. In both cell types, 16-h exposure to doxorubicin
increased the G2–M fraction (Fig. 2a, b, Supplementary
Fig. 2a, b). Doxorubicin failed to increase the fraction of
G2–M phase cells in CHK1-inhibited breast and lung
cells, indicating that CHK1 is required for a doxorubicin-
mediated G2–M arrest in these cells (Fig. 2a, b, Supple-
mentary Fig. 2a, b). In contrast, the requirement for
CHK2 for a doxorubicin-induced cell cycle arrest
appeared to be different for breast and lung cells. Dox-
orubicin treatment enhanced the G2–M fraction in
CHK2-inhibited lung cells but not in CHK2-inhibited
breast cells (Fig. 2a–d).
To understand why CHK2 is required for G2–M arrest

in breast but not in lung cells, we focused on its down-
stream effector CDC2, which in complex together with
Cyclin B1 constitutes the master regulator of the G2–M
transition (Fig. 3a). Doxorubicin treatment increased
CDC2 inhibitory phosphorylation (pCDC2 Y15) at 6 h
(Fig. 3b, c), coinciding with peak levels of active CHK1
and CHK2 (Supplementary Fig. 3a). This is consistent
with the induction of a G2–M arrest. Afterwards, a loss of
Cyclin B1 presumably sustained cell cycle arrest (Sup-
plementary Fig. 3a–c)18. Next, we examined whether
doxorubicin treatment in CHK1- and CHK2-inhibited
cells was able to increase pCDC2 phosphorylation. In
CHK1-inhibited cells, doxorubicin treatment failed to
augment inactive CDC2 levels (Fig. 3b, c, Supplementary

van Jaarsveld et al. Oncogenesis            (2020) 9:35 Page 2 of 7

Oncogenesis



0 50K 100K 150K 200K 250K

0
10
20
30
40
50
60
70
80

G1-G0 Active S G2-M S arrest

Primary Breast

***
***

***
***

***
***

*

a b

c

total CHK1

0

100

200

300

400

500

total CHK2

0

500

1000

1500
pCHK2 T68

0

100

200

300

400 **

pCHK1 S345

Primary Breast Primary Lung
0

100

200

300 *

P21

0.0

0.2

0.4

0.6

0.8

1.0 **
Inactive CDC2

0.0

0.5

1.0

1.5 **

d e

CDC2

CDC25A
CDC25C

P53

pCHK1 pCHK2

G2/M transition

P21

G1/S transition

G2-M

0 50K 100K 150K 200K 250K
PI-A: 561-610/620

Primary Lung

0
10
20
30
40
50
60
70
80

Primary Lung

0     50K   100K  150K 200K 250K

E
dU

-A
: 6

40
-6

70
/1

4

DMSO
Chk1i
Chk2i

B
reast

Lung
0

10

20

30

40

50

60
70

G0-G1 G2-M S arrest

Primary Breast

Primary Lung

***

***
***

***
***

**
**

Pe
rc

en
ta

ge
 (%

)

Pe
rc

en
ta

ge
 (%

)

1.11% 18.4%

G0-G1
57.5%

0.68% 29.8%
Arrested S G2-M

Primary Breast

E
dU

-A
: 6

40
-6

70
/1

4

PI-A: 561-610/620

Active S Phase
0.93%

G0-G1
71.6%

Ar
bi

tra
ry

 U
ni

ts
 (a

.u
.)

Ar
bi

tra
ry

 U
ni

ts
 (a

.u
.)

Ar
bi

tra
ry

 U
ni

ts
 (a

.u
.)

Ar
bi

tra
ry

 U
ni

ts
 (a

.u
.)

Primary Breast Primary Lung

Primary Breast Primary Lung Primary Breast Primary Lung

Primary Breast Primary Lung Primary Breast Primary Lung

Arrested S

Active S

Active S Phase
2.08%

Active S Phase
14.3%

G0-G1
50.5%

G0-G1
64.1%

Arrested S   G2-M
     2.78%     22.9%

Arrested S   G2-M
     4.65%     40.8%

Arrested S   G2-M
    1.87%     17.8%

Active S Phase
0.72%

Active S Phase
1.22%

Active S Phase
15.5%

DMSO CHK1i CHK2i

G0-G1
50.1%

G0-G1
43.6%

G0-G1
53.7%

Arrested S   G2-M
   3.92%      44.7%

Arrested S   G2-M
   2.79%      50.9%

Arrested S   G2-M
   0.69%      29.9%

0     50K   100K  150K 200K 250K 0     50K   100K  150K 200K 250K

0     50K   100K  150K 200K 250K 0     50K   100K  150K 200K 250K 0     50K   100K  150K 200K 250K

PI-A: 561-610/620

105

104

103

0

-103

105

104

103

0

-103

105

104

103

0

-103

105

104

103

0

-103

105

104

103

0

-103

105

104

103

0

-103

105

104

103

0

-103

105

104

103

0

-103

E
dU

-A
: 6

40
-6

70
/1

4

G0-G1
64.6%

Active S Phase
14.7%

Active S Phase
11.2%

Pe
rc

en
ta

ge
 (%

)
DMSO
Chk1i
Chk2i

Ar
bi

tra
ry

 U
ni

ts
 (a

.u
.)

Ar
bi

tra
ry

 U
ni

ts
 (a

.u
.)

G1-G0 Active S G2-M S arrest

Fig. 1 CHK1 and CHK2 dynamics are associated with differential cell cycle regulation in human primary breast and lung cells. a Cell cycle
profile of human primary breast and lung cells. The results of three independent replicates are depicted (details are available in Supplementary
Material). Error bars represent the standard deviation. b Expression analysis of total and active CHK1 and CHK2. Lysates from seven primary breast
samples and seven primary lung samples, which were isolated from different batches at different times, were analyzed on western blot
(Supplementary Fig. 1) and quantified as described in Supplementary Material. A two-sided t test was performed to compare the protein levels
between primary breast and lung cells. *p < 0.05; **p < 0.01. c CHK1 inhibition distorts the cell cycle profile of both lung and breast cells, whereas an
effect of CHK2 inhibition is predominantly observed in breast cells. Cells were treated with DMSO, CHK1 (PF477736, Sigma-Aldrich #PZ0186; 1 µM), or
CHK2 inhibitor (Cayman Chemicals #17552; 10 µM) for 16 h. During the last 2 h, cells were incubated in the presence of 10 μM EdU. Depicted is a
representative experiment (three independent replicates, error bars represent the standard deviation). A two-way ANOVA with Bonferroni post hoc
test was performed to compare CHK1- and CHK2-inhibited samples with the DMSO-treated control (**p < 0.01, ***p < 0.001). d CHK1 and CHK2 have
partially overlapping functions in regulating the cell cycle. Depicted is a cartoon model of regulation of P53, P21, CDC25, and CDC2 by CHK1 and
CHK2. CHK1 and CHK2 have overlapping targets, but CHK2 is considered to have a larger role in inducing P53 phosphorylation and P21 activation.
CHK1 and CHK2 can both inactivate CDC25C, but CHK1 is considered to be the main inhibitor of CDC25A. CDC25A and CDC25C are phosphatases for
CDC2, which remove inhibitory phosphorylation residues, resulting in CDC2 activity and G2-M transition. e Differential activity of CHK1 and CHK2 in
breast and lung cells is reflected in P21 levels and CDC2 activity. P21 levels are higher in breast cells, whereas inactive CDC2 levels (pCDC2 Y15) are
higher in lung cells (details are available in Supplementary Material). A two-sided t test was performed to compare the protein levels between breast
and lung cells. **p < 0.01.
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Fig. 3a). This indicates that CHK1 is required for the
inhibition of CDC2 and may explain why doxorubicin
does not enhance the fraction of cells in G2–M phase
after CHK1 inhibition (Fig. 2a). Interestingly, we observed
that the effect of doxorubicin on CHK2-inhibited cells
was tissue-specific. In CHK2-inhibited lung cells, doxor-
ubicin induced CDC2 inactivation (Fig. 3b, c), which may
reflect the induction of a G2–M cell cycle arrest. How-
ever, in CHK2-inhibited breast cells, doxorubicin did not
elevate CDC2 inhibitory phosphorylation, which may
explain why the G2–M cell fraction did not increase after
doxorubicin exposure (Fig. 2b–d).

Together, these findings indicate that CHK2 has a tissue-
specific role in mediating DNA damage induced G2-M arrest.

Discussion
In this exploratory study, we present evidence that

CHK1 and CHK2 play tissue-specific roles in cell cycle
regulation. CHK1 activity is higher in lung cells and
CHK1 inhibition has a more profound effect on cell cycle
regulation in lung cells than in breast cells. In contrast,
active CHK2 levels are higher in breast cells and CHK2
inhibition distorts the cell cycle profile of breast cells,
whereas the effect on lung cells is minor.
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CHK1 and CHK2 are both activated upon DNA damage
and can regulate cell division. CHK1 activity has been
mostly implicated in the intra-S phase cell cycle check-
point and the G2–M transition19. In contrast, CHK2
activity is associated with G1–S and G2–M arrests. CHK1
and CHK2 regulate different cell cycle proteins. An
important group of cell cycle regulators is the CDC25
family, which are phosphatases that activate CDC2 and/or
cyclin-dependent kinase 2. Both CHK1 and CHK2 can
inhibit CDC25C20,21, whereas CHK1 is more effective in
phosphorylating CDC25A15 and CDC25B22. Through
inhibition of the CDC25 family, CHK1 and CHK2 may
prevent CDC2 activation. In addition, CHK1 can con-
tribute to inactive CDC2 phosphorylation by stimulating
the kinase Wee123. Since CHK1 activity is higher in lung
cells, this may explain why the levels of inactive CDC2 are
higher in lung cells. Another mechanism by which CHK2
and CHK1 regulate the cell cycle is through phosphor-
ylation of P53 and upregulation of P2124,25. In line with
the notion that CHK2 has a larger role than CHK1 in
inducing P21 expression16, P21 levels are higher in
breast cells.
Interestingly, we previously observed that CHK1 is

preferentially upregulated after DNA damage in lung

cells, whereas CHK2 activation was stronger in breast
cells after DNA DSBs4. We therefore tested the role of
CHK1 and/or CHK2 in DNA damage-induced cell cycle
arrests. When breast and lung cells were treated with
doxorubicin, a twofold increase in the fraction of G2–M
phase cells was observed. This increase could not be
observed in CHK1-inhibited cells, in line with the notion
that CHK1 activity is essential for the induction of a
G2–M arrest26. Remarkably, doxorubicin treatment
enhanced the G2–M phase fraction of CHK2-inhibited
lung cells but not in CHK2-inhibited breast cells. An
explanation for this may be the observation that CHK2-
inhibited lung cells were still able to inactivate CDC2,
whereas CHK2-inhibited breast cells were not. The peak
CDC2 inhibitory phosphorylation occurred at 6 h, coin-
ciding with the pCHK2 and pCHK1 activity peaks.
Interestingly, afterwards pCDC2 levels appeared to
decrease, as has been described to be a cell-type-specific
phenomenon27,28 (reviewed in ref. 18). Since the CDC2/
Cyclin B complex is a better substrate for tyrosine kinase
Wee129 than CDC2 alone, we hypothesize that the drop in
Cyclin B levels may be responsible for this decrease. Thus
the initial inactivation of CDC2 triggers an early G2–M
arrest, whereas the drop in Cyclin B1 levels at a later stage
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may maintain G2–M phase arrest. The mechanism
responsible for the loss of Cyclin B1 may be the upregu-
lation of P5318.
Cell cycle checkpoints are important to prevent trans-

mission of damaged DNA to the daughter cells, and hence
CHK1 and CHK2 can protect cells against cancer30.
Concurringly, sporadic mutations of CHK1 and CHK2
have been found in most types of cancer. In addition,
germline mutations of CHK2 appear to predispose for
certain types of cancer. People who harbor truncating
CHK2 mutations (e.g., CHEK2*1100delC mutation) have
an approximately twofold increased risk of developing
breast cancer31,32. Carriers also have an increased like-
lihood to develop prostate33,34 and colon cancer35–37, but,
intriguingly, no increased risk of lung cancer38,39.
Considering the pivotal importance of cell cycle arrests to

prevent genomic instability, our data may provide an
explanation for why loss of CHK2 predisposes for breast
cancer but not for lung cancer. Since mice harboring a
CHK2*1100delC mutation did not show the tissue-specific
bias observed in humans40, a better disease model is needed
to understand CHK2-mediated cancer predisposition. The
comparative analysis of healthy primary epithelial cells may
provide further insights into the relation between loss of
CHK2 and tissue-specific cancer development.
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