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Abstract

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. In this way they

might influence whether a cell is sensitive or resistant to a certain drug. So far, only a limited

number of relatively small scale studies comprising few cell lines and/or drugs have been

performed. To obtain a broader view on miRNAs and their association with drug response,

we investigated the expression levels of 411 miRNAs in relation to drug sensitivity in 36

breast cancer cell lines. For this purpose IC50 values of a drug screen involving 34 drugs

were associated with miRNA expression data of the same breast cancer cell lines. Since

molecular subtype of the breast cancer cell lines is considered a confounding factor in drug

association studies, multivariate analysis taking subtype into account was performed on sig-

nificant miRNA-drug associations which retained 13 associations. These associations con-

sisted of 11 different miRNAs and eight different drugs (among which Paclitaxel, Docetaxel

and Veliparib). The taxanes, Paclitaxel and Docetaxel, were the only drugs having miRNAs

in common: hsa-miR-187-5p and hsa-miR-106a-3p indicative of drug resistance while Pacli-

taxel sensitivity alone associated with hsa-miR-556-5p. Tivantinib was associated with hsa-

let-7d-5p and hsa-miR-18a-5p for sensitivity and hsa-miR-637 for resistance. Drug sensitiv-

ity was associated with hsa-let-7a-5p for Bortezomib, hsa-miR-135a-3p for JNJ-707 and

hsa-miR-185-3p for Panobinostat. Drug resistance was associated with hsa-miR-182-5p for

Veliparib and hsa-miR-629-5p for Tipifarnib. Pathway analysis for significant miRNAs was

performed to reveal biological roles, aiding to find a potential mechanistic link for the

observed associations with drug response. By doing so hsa-miR-187-5p was linked to the

cell cycle G2-M checkpoint in line with this checkpoint being the target of taxanes. In conclu-

sion, our study shows that miRNAs could potentially serve as biomarkers for intrinsic drug

resistance and that pathway analyses can provide additional information in this context.

1. Introduction

Biomarkers of drug sensitivity/resistance are of great interest for the clinic as they allow for

patient stratification–thereby identifying the most effective therapy for patients faster,
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reducing overtreatment and toxicity burden as well as saving costs. In the search for highly

suited biomarkers irrespective of research field or application, microRNAs (miRNAs) have

become increasingly popular due to their stability and broad applicability, underlining their

potential as biomarkers [1,2].

MiRNAs are small oligonucleotides involved in multiple processes such as aging, tissue

development and also cancer [3–5]. They bind in a sequence-dependent fashion to mRNA 3’

UTRs leading to inhibition of messenger RNA (mRNA) translation, endonucleolytic cleavage

of the mRNA or mRNA destabilization. Through affecting mRNA translation and stability,

miRNAs ultimately regulate protein expression [6,7]. As miRNA-recognition sequences are

present in many genes, one miRNA can impact up to several hundred transcripts [7–12].

Until now, several studies have been conducted to link miRNAs to treatment outcome

[13,14]. In these earlier studies, mainly drug-resistant cell lines were generated, which were

then compared to their parental cell lines to reveal differentially expressed miRNAs, which

were subsequently studied in functional experiments. While these experiments are instrumen-

tal for a mechanistic understanding of miRNAs in drug sensitivity/resistance, such experi-

ments do not necessarily identify predictors of drug resistance or sensitivity. Furthermore,

most of these studies involved only one drug and were performed with a limited number of

cell lines. As breast tumors can be classified into distinct subtypes with different clinical out-

come [15,16] this should also be reflected in study design by including larger series of cell

lines, together better resembling the clinical variability. Furthermore, screening for drug resis-

tance against many drugs may not only identify miRNAs associated with one compound but

may also identify miRNAs linked to sensitivity/resistance of more than one drug.

Therefore, we analyzed 36 well-characterized breast cancer cell lines that we screened for

sensitivity to 34 compounds to obtain more clinically meaningful results on miRNAs and their

potential as biomarkers for drug response in breast cancer. Our study showed that this

approach was feasible and led to the identification of several miRNA-drug associations not

found earlier.

2. Materials and methods

2.1 Breast cancer cell lines

Cell lines were cultured and profiled for correct identity as described previously [17]. In sum-

mary: Cell lines were cultured for RNA isolation until 70–80% confluence on collagen-coated

petri dishes in triplicate. RPMI 1640 medium with 10% heat-inactivated fetal bovine serum

and antibiotic agents (80 μg/ml (0.08 kg/m3) Streptomycin and 100 μg/ml (0.1 kg/m3) Penicil-

lin G) was used as medium.

To ensure cell line identity, DNA of the 36 breast cancer cell lines was isolated using the

QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) and subsequently subjected to short-tan-

dem repeat (STR) profiling using the PowerPlex16 system (Promega, Madison, WI, USA) fol-

lowing manufacturer’s protocol. A 3130xl Genetic Analyzer (Applied Biosystems, Foster City,

CA, USA) was used for detection and Genemarker 1.91 software from Softgenetics (State Col-

lege, PA, USA) was employed for analysis. STR profiles were compared with those deposited at

the American Type Culture Collection (Manassas, VA, USA) and the Deutsche Sammlung

von Mikroorganismen und Zellkulturen (Braunschweig, Germany). For SUM cell lines, STR

profiles were not available, so in-house profiles from the earliest passages were compared with

those generated later. Cell lines had been obtained between 1997 and 2006 from the following

sources:

American Type Culture Collection (BT-20 [18], BT-474 [19], BT-549 [20], CAMA-1 [21],

HCC1143 [22], HCC1395 [22], HCC1569 [23], HCC1806 [23], HCC-1937 [24], HCC1954
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[22], HCC202 [22], HCC38 [25], HCC70 [22], Hs578T [26], MCF-7 [27], MDA-MB-175VII

[28], MDA-MB-231 [28], MDA-MB-361 [28], MDA-MB-415 [29], MDA-MB-436 [29],

MDA-MB-468 [29], SK-BR-3 [30], T47D [31], UACC812 [32]),

Dr. N. de Vleesschouwer (Institut Jules Bordet, Brussels, Belgium) (EVSA-T [33]),

Dr. H.S. Smith (California Pacific Medical Center, San Francisco, CA, USA) (MPE-600 [34]),

Dr. E. Stockert (Sloan-Kettering Institute for Cancer Research, New York, NY, USA)

(SK-BR-7 [35]),

Ethier laboratory (BioIVT, West Sussex, UK) (SUM1315M02 [36], SUM149PT [36],

SUM159PT [36], SUM185PE [36], SUM190PT [36], SUM229PE [36], SUM44PE [37],

SUM52PE [38]), Riken Gene Bank (Tsukuba, Japan) (OCUB-M [39])

2.2 Drug screening

Drug screening data was previously published for an extended cell line panel and the detailed

description of drug-drug relations as well as the entire drug response dataset is available there

[40]. In brief: The breast cancer cell lines were cultured and plated in triplicate in 96-well colla-

gen-coated plates, and then incubated for 96 hours with 12 serial dilutions of 37 drugs or vehi-

cle per cell line. The drugs were supplied by Janssen Pharmaceutica (Beerse, Belgium) except

for Veliparib, which was supplied by Abbott Laboratories (North Chicago, IL, USA). After 96

hours the Sulforhodamine B Assay was used to quantify total protein as a measure of cell num-

ber [41] and IC50 values were computed subsequently [40]. Three drugs did not exhibit differ-

ential responses among the cell lines and were excluded from the final dataset [40]. Therefore,

the present study included 34 drugs which were used for further analyses.

2.3 RNA isolation

RNA isolation was performed as described earlier [17]. To summarize: RNAzol-B reagent

(Campro Scientific BV, Veenendaal, the Netherlands) was used for isolation of total RNA

from all cell lines according to manufacturer’s protocol. Quality of isolated RNA was verified

using spectrophotometric assessments of the A260nm/A280 nm and the A260nm/A230nm ratios,

with the first required to have a value of approximately 2 and the second to have a value of 2 or

higher. For these measurements a NanoDrop ND-1000 (Isogen Life Science, De Meern, the

Netherlands) was used. Additional quality checks were performed as described earlier [42].

2.4 Gene expression profiling

Gene expression profiling was performed as previously described [17]. Reverse transcription

was performed on 200 ng (2E-10 kg) of total RNA, followed by cDNA synthesis and the gener-

ation of biotin-labeled cRNA using the 3’ IVT express kit (Affymetrix, Santa Clara, CA, USA).

Fragmentation of the labeled cRNA ensued and finally the fragmented and labeled cRNA was

loaded on the Affymetrix GeneTitan. The hybridization mixture was loaded on Affymetrix

Human_Genome_HT_HG-U133_Plus_PM GeneChip 96-well arrays. The subsequent steps

(hybridization, washing and scanning) were performed within the GeneTitan. In the Affyme-

trix Expression Console the generated “.CEL” files were subjected to normalization employing

the default settings of the RMA method. The generated data have been uploaded to the Gene

Expression Omnibus data repository under the following access code: [GEO:GSE41313].

Breast cancer subtypes were determined using hierarchical clustering. Clusters were

obtained with average distance linkage hierarchical clustering with non-centered correlation

as distance metric. The three resulting clusters were matched to previously established intrinsic

subtypes [43] of these cell lines (which were based on a different chip-type) and the clusters

were labeled as ‘basal’, ‘luminal’ and ‘normal-like’.
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2.5 miRNA expression profiling

The procedure employed for miRNA expression profiling has been described previously in

detail [17,44]. MiRNA expression data of cell lines with confirmed identity were used. To gen-

erate the data set, one microgram (1E-09 kg) of total RNA was labeled with the dye Cy3 using

the ULS aRNA labeling kit (Kreatech, Amsterdam, the Netherlands). Only RNA samples with

a labeling efficiency higher than 15 pmol Cy3/μg RNA (1.5E-20 mol/kg) were used for hybrid-

ization. One sample was used per cell line. Hybridization was performed overnight. Normali-

zation of the data was performed as previously described [44]. Labeled total RNA isolated

from all cell lines was hybridized to home-made microarrays containing LNA modified cap-

ture probes from Exiqon (Vedbaek, Denmark) for the miRNA capture. This miRNA microar-

ray design was based on miRBase version 10.0 (annotation version 13), contained 1344 probes

and had the capacity to measure the expression levels of 725 human miRNAs.

Within this dataset two miRNAs (hsa-miR-185 and hsa-miR-620) were represented twice on

the microarray with differential probes. We removed the measurements with the older probes

(hsa-miR-185 probe ID 5560 and hsa-miR-620 probe ID 32825) and kept the measurements of

the newer probes (miRNA hsa-miR-185 probe ID 42902 and miRNA hsa-miR-620 probe ID

42994). We assessed whether the probe version influenced results, however, this was not the case.

The removal of the older probes resulted in a final number of 411 miRNAs expressed above

background. MiRNA expression data has been published earlier [17], except for the cell line

OCUB-M, the miRNA expression data for this cell line can be found in S1 Table. The signifi-

cant miRNAs are listed with the Exiqon oligonucleotide ID and the different miRBase [45]

annotations, as well the corresponding MIMAT identifier in S2 Table.

2.6 Association of miRNA expression with IC50 values and co-expression

analysis

By inspecting the results of the drug screening it became evident that the IC50 response curves

for different drugs were very different across cell lines (see also Uhr et al.[40]). While for some

drugs most cell lines had different IC50 values, other drugs had a large number of cell lines

with the same IC50 value up to almost all cell lines having identical IC50 values. Due to this it

became clear that different analyses would be required to account for the different IC50 drug

profiles. For most drugs, several cell lines had an IC50 value which was at the maximum of the

tested drug concentration. Depending on the number of cell lines with values at maximum

drug level, we chose to either use Spearman correlation (� 5 maximum IC50 values), a 2-step

analysis (>5 IC50 values at maximum &�10 IC50 values not at the maximum) or a Mann-

Whitney test (<10 IC50 values which are not at the maximum). MiRNA data were log10 –

transformed for analyses, drug data were transformed to negative log 10 values.

The first step of the 2-step analysis consisted of Spearman correlation of those IC50 values

that were not at the maximum drug concentration (“variable IC50 values”) with miRNA

expression values. Identified miRNA-drug associations were then tested in the second step, a

Mann-Whitney test, classifying all IC50 values at maximum drug concentration as resistant

and the remaining variable IC50 values as sensitive.

Over the results of each analysis group (Spearman correlation, 2-step analysis, Mann-Whit-

ney test), q-values [46] were calculated to account for multiple testing. A q-value of 0.3 or

lower was determined significant. The analysis type used per drug is listed in S3 Table.

Analyses were performed in R (versions 3.4.4 up to 3.5.1) [47] using the psych package [48]

and corr.test function for Spearman correlations, setting alpha at 0.05. The R function wilcox.

test was used for Mann-Whitney testing. Q-values were calculated using the q value Biocon-

ductor package [49] in R.
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Fig 1 was created in Inkscape 0.92 (Free Software Foundation Inc., Boston, USA).

2.7 Multivariate analysis

MiRNAs significantly associated with drug response were evaluated in a multivariate analysis,

including gene-expression-based breast cancer subtype as a co-variate. Linear regression was

used, as only drugs with a linear IC50 profile had shown significant associations with miRNA

expression. Subtypes were used as a binary variable: basal vs rest, luminal vs rest and normal-

like vs rest. The IC50 values were used as the dependent variable, while the miRNA levels as

well as one of the binary subtype groups were used as independent variables. This regression

model was run for each of the three binary subtype-groups separately and was calculated using

Stata—version 13 (StataCorp, College Station, TX, USA).

2.8 Pathway analyses

Pathway analyses were performed on the mRNA data described above. The 11 significant miR-

NAs that were not related to subtype were analyzed by grouping the cell lines into top and bot-

tom 25% based on the expression of the respective miRNA. This led to 9 cell lines per group.

Fig 1. Overview of miRNAs associated with different drugs. The correlation coefficient is given on the y-axis. Associations with drug resistance are given in orange;

associations with drug sensitivity are given in blue. Bor = Bortezomib, JNJ = JNJ-707, Mit = Mitoxantrone, Pan = Panobinostat, Qui = Quisinostat, Ser = Serdemetan,

Sir = Sirolimus, Sun = Sunitinib, Tip = Tipifarnib, Vel = Veliparib.

https://doi.org/10.1371/journal.pone.0216400.g001
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The mRNA expression of top and bottom cell lines was analyzed for differences in R [47]

using the Global Test package [50] and Biocarta (San Diego, CA, USA) and KEGG [51] path-

way information. P-values were subjected to multiple testing correction (method “BH”, also

known as “FDR”) and a permutation test (1000 permutations) of the non-adjusted p-value was

used as an additional selection criterion. Associations with BH-adjusted p-values below 0.1

and permutation p-values below 0.05 were deemed significant.

3. Results

3.1 Association of miRNAs with drug sensitivity

In the analysis we combined the data of 36 cell lines for which 34 drugs gave differential

responses among the included cell lines [40] and the expression data of 411 miRNAs [17].

To associate miRNA expression with drug response, we first inspected the IC50 profiles of

all 34 compounds among the breast cancer cell lines. Based on the number of cell lines with a

maximum IC50 value we chose one of three different analysis approaches as defined in Materi-

als and Methods.

Only the drugs with “linear” IC50 values showed significant associations with miRNA expres-

sion upon q-value correction, totaling to 27 miRNA-drug associations (see Table 1 and Fig 1).

3.2 Breast cancer subtype as potential confounder of miRNA drug

associations

In a previous study [40] we had found that certain breast cancer subtypes can respond differ-

ently to some drugs. As expression of certain miRNAs might be related to a specific subtype,

we assessed our significant findings in a multivariate analysis. In this analysis we modeled the

association between drug response and miRNA expression and subtype. All 27 associations

were tested with subtype and the respective results are listed in S4 Table. Fourteen miRNA-

drug associations were linked to one or more breast cancer subtypes. Basal subtype was associ-

ated stronger with the respective miRNA than the associated drug for the following associa-

tions: hsa-miR-586 and Paclitaxel, hsa-miR-589-5p and Sunitinib and hsa-miR-586 and

Tipifarnib. Luminal subtype affected the association between hsa-miR-27a-3p and Quisinostat

as well as hsa-miR-23a-3p and Sirolimus. Normal-like subtype confounded the associations

between hsa-miR-101-3p and Mitoxantrone, hsa-miR-125b-1-3p and Mitoxantrone, hsa-miR-
497-3p and Mitoxantrone, hsa-miR-640 and Mitoxantrone and hsa-miR-522-3p and Paclitaxel.

Several associations were related to more than one subtype: These were the subtypes basal and

luminal for the two Docetaxel-associated miRNAs hsa-miR-338-3p and hsa-miR-586. Further-

more, the subtypes luminal and normal-like showed an effect on the association between hsa-
miR-522-3p and Mitoxantrone and the subtypes basal and normal-like were implicated in the

association between hsa-miR-182-5p and Serdemetan.

Molecular subtype did not affect the 13 remaining miRNA-drug associations (8 drugs, 11

miRNAs), which are highlighted in more detail below.

Sensitivity to the c-Met inhibitor Tivantinib [52] was associated with the expression of two

miRNAs, i.e. hsa-let-7d-5p and hsa-miR-18a-5p, while drug resistance was associated with hsa-
miR-637. Drug sensitivity to the proteasome inhibitor Bortezomib [53] was associated with

hsa-let-7a-5p expression. Among the microtubule-targeting taxanes Docetaxel and Paclitaxel

[54], we found that hsa-miR-106a-3p and hsa-miR-187-5p expression were positively corre-

lated with drug resistance for both drugs. Hsa-miR-556-5p expression, however, was solely

associated with Paclitaxel sensitivity. Hsa-miR-135a-3p expression was related to sensitivity to

JNJ-707, a drug targeting FGF receptors [40]. Panobinostat, one of the HDAC inhibitors [55]
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in our screening, showed a positive correlation with hsa-miR-185-3p expression for drug sensi-

tivity. For Tipifarnib, a farnesyltransferase inhibitor targeting RAS signal transduction [56],

expression of hsa-miR-629-5p was associated with resistance to the drug, while drug resistance

to the PARP inhibitor Veliparib [57] was associated with hsa-miR-182-5p expression.

Besides the confounding effect of the breast cancer subtypes on some miRNA-drug associa-

tions, we also noted that several drugs had more than one associated miRNA, which led to our

next analysis whether miRNAs are co-expressed.

3.3 Co-expression among miRNAs associated with the same drug

To study whether miRNAs that significantly associated with the same drug in univariate analy-

sis showed a correlated expression pattern, we performed a correlation analysis. Below we dis-

cuss Tivantinib, Docetaxel and Paclitaxel, as each of these three drugs had several associated

miRNAs unrelated to one of the breast cancer subtypes (see S4 Table). Correlation coefficients

and p-values are given in the S5–S7 Tables. In the case of Tivantinib the miRNAs hsa-miR-
18a-5p and hsa-let-7d-5p showed a mild positive correlation with each other (R = 0.28), which

was however not significant, while hsa-miR-637 showed a significant negative association with

Table 1. MiRNAs associated with drug response.

Drug MiRNA Association type R p-value q-value

Tivantinib hsa-let-7d-5p Sensitivity 0.57 3.96E-04 0.18

Tivantinib hsa-miR-18a-5p Sensitivity 0.57 3.88E-04 0.18

Tivantinib hsa-miR-637 Resistance -0.55 6.51E-04 0.24

Bortezomib hsa-let-7a-5p Sensitivity 0.57 2.94E-04 0.18

Docetaxel hsa-miR-187-5p Resistance -0.65 1.89E-05 0.07

Docetaxel hsa-miR-586 Resistance -0.65 1.99E-05 0.07

Docetaxel hsa-miR-106a-3p Resistance -0.58 2.26E-04 0.18

Docetaxel hsa-miR-338-3p Resistance -0.58 1.85E-04 0.18

JNJ-707 hsa-miR-135a-3p Sensitivity 0.55 5.15E-04 0.21

Mitoxantrone hsa-miR-497-3p Sensitivity 0.56 3.83E-04 0.18

Mitoxantrone hsa-miR-640 Resistance -0.58 1.95E-04 0.18

Mitoxantrone hsa-miR-101-3p Resistance -0.53 8.85E-04 0.27

Mitoxantrone hsa-miR-522-3p Resistance -0.53 9.67E-04 0.27

Mitoxantrone hsa-miR-125b-1-3p Sensitivity 0.52 1.07E-03 0.29

Paclitaxel hsa-miR-106a-3p Resistance -0.56 4.17E-04 0.18

Paclitaxel hsa-miR-187-5p Resistance -0.57 2.64E-04 0.18

Paclitaxel hsa-miR-522-3p Resistance -0.56 3.44E-04 0.18

Paclitaxel hsa-miR-586 Resistance -0.56 3.40E-04 0.18

Paclitaxel hsa-miR-556-5p Sensitivity 0.54 7.65E-04 0.26

Panobinostat hsa-miR-185-3p Sensitivity 0.54 6.47E-04 0.24

Quisinostat hsa-miR-27a-3p Resistance -0.53 9.06E-04 0.27

Serdemetan hsa-miR-182-5p Resistance -0.58 2.08E-04 0.18

Sirolimus hsa-miR-23a-3p Resistance -0.57 2.46E-04 0.18

Sunitinib hsa-miR-589-5p Sensitivity 0.54 7.35E-04 0.26

Tipifarnib hsa-miR-586 Resistance -0.57 3.54E-04 0.18

Tipifarnib hsa-miR-629-5p Resistance -0.54 9.01E-04 0.27

Veliparib hsa-miR-182-5p Resistance -0.63 4.25E-05 0.1

MiRNAs significantly associated with drug response. Associations were computed using Spearman’s correlation and the correlation coefficient (R) is given, next to the

unadjusted p-value and the q-value.

https://doi.org/10.1371/journal.pone.0216400.t001
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the aforementioned miRNAs (R = -0.49 and -0.46, respectively). The two Docetaxel- and Pacli-

taxel-associated miRNAs hsa-miR-187-5p and hsa-miR-106a-3p showed an intermediate sig-

nificant positive correlation with each other (R = 0.40), while the other Paclitaxel-associated

miRNA hsa-miR-556-5p was significantly negatively associated with hsa-miR-187-5p and hsa-
miR-106a-3p (R = -0.50 and -0.44, respectively).

3.4 Pathway analyses on significant miRNAs

In the next step, we performed pathway analyses to learn more about the biology of the miR-

NAs associated with drug response in the breast cancer cell lines. For this purpose we used

those 11 miRNAs which were significantly associated with drug response independent of sub-

types (see Table 1 and S4 Table). Messenger RNA expression data from the cell lines with the

most differential expression of each miRNA (high versus low expression were compared; 9 per

subgroup) were used as input for the pathway analysis. Pathways which were significantly dif-

ferent between samples with high or low expression of a tested miRNA are shown in Table 2.

Table 2. Pathways associated with miRNAs.

MiRNA Pathway Permutation p-

value

BH-adjusted p-vaule pp-

value

Associated drugs

hsa-miR-106a-
3p

TPO Signaling Pathway (Biocarta) 1.00E-03 7.48E-02 Docetaxel,

Paclitaxel

Nerve growth factor pathway NGF (Biocarta) 1.00E-03 7.48E-02

T Cell Receptor Signaling Pathway (Biocarta) 0.00E+00 9.74E-02

Insulin Signaling Pathway (Biocarta) 2.00E-03 9.74E-02

Signaling Pathway from GProtein Families (Biocarta) 3.00E-03 9.74E-02

Cadmium induces DNA synthesis and proliferation in macrophages

(Biocarta)

3.00E-03 9.74E-02

EPO Signaling Pathway (Biocarta) 6.00E-03 9.74E-02

hsa-miR-135a-
3p

Pantothenate and CoA biosynthesis (KEGG) 0.00E+00 5.39E-02 JNJ-707

hsa-miR-182-
5p

Intrinsic Prothrombin Activation Pathway (Biocarta) 4.00E-03 5.02E-02 Veliparib

Role of Tob in Tcell activation (Biocarta) 8.00E-03 5.02E-02

Acute Myocardial Infarction (Biocarta) 1.20E-02 5.02E-02

Actions of Nitric Oxide in the Heart (Biocarta) 1.20E-02 5.02E-02

Erythrocyte Differentiation Pathway (Biocarta) 1.30E-02 5.02E-02

Signal transduction through IL1R (Biocarta) 1.70E-02 5.02E-02

ALK in cardiac myocytes (Biocarta) 1.70E-02 5.02E-02

Cytokines and Inflammatory Response (Biocarta) 1.90E-02 5.02E-02

Integrin Signaling Pathway (Biocarta) 2.30E-02 5.02E-02

Estrogenresponsive protein Efp controls cell cycle and breast tumors growth

(Biocarta)

3.00E-02 5.02E-02

Selective expression of chemokine receptors during Tcell polarization

(Biocarta)

3.30E-02 5.02E-02

Cell Cycle G1 S Check Point (Biocarta) 3.30E-02 5.02E-02

Cytokine Network (Biocarta) 3.30E-02 5.58E-02

Phosphoinositides and their downstream targets (Biocarta) 4.10E-02 5.02E-02

Role of ERBB2 in Signal Transduction and Oncology (Biocarta) 4.30E-02 5.02E-02

Hypoxia and p53 in the Cardiovascular system (Biocarta) 4.40E-02 5.36E-02

Trefoil Factors Initiate Mucosal Healing (Biocarta) 4.70E-02 6.71E-02

TGFbeta signaling pathway (KEGG) 8.00E-03 8.41E-02

Focal adhesion (KEGG) 1.30E-02 8.41E-02

(Continued)
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For 6 of the 11 miRNAs we found significantly associated pathways. The miRNAs hsa-miR-
135a-3p, hsa-miR-556-5p and hsa-miR-637 each had only 1 pathway associated, while hsa-
miR-106a-3p had 7 pathways associated and hsa-miR-182-5p and hsa-miR-187-5p each had 19

pathways significantly associated. For the 3 miRNAs associated with multiple pathways, these

pathways typically included the same genes such as in the case of hsa-miR-106a-3p with the

genes JUN and FOS upregulated in all significant pathways and PIK3R1 being upregulated in 3

of the 7 pathways. In the case of hsa-miR-182-5p many of the associated pathways had genes of

the COL4A family and the TGF-β family downregulated, while for hsa-miR-187-5p several of

the pathways contained the genes CXCR4, ESR1, PDK2, PTEN; as well as the ER-regulated

genes TFF1 [58] and TFF3 [59].

4. Discussion

Our exploratory investigation showed that the expression of specific miRNAs can indicate

drug sensitivity or resistance in breast cancer cell lines. In total, we were able to identify 21 dif-

ferent miRNAs associated with response to 13 different drugs, totaling up to 27 miRNA-drug

associations. After excluding miRNAs that also associate with breast cancer subtype in

Table 2. (Continued)

MiRNA Pathway Permutation p-

value

BH-adjusted p-vaule pp-

value

Associated drugs

hsa-miR-187-
5p

Selective expression of chemokine receptors during Tcell polarization

(Biocarta)

3.00E-03 7.70E-02 Docetaxel,

Paclitaxel

Trefoil Factors Initiate Mucosal Healing (Biocarta) 3.00E-03 7.70E-02

CXCR4 Signaling Pathway (Biocarta) 1.60E-02 7.70E-02

Regulation of eIF4e and p70 S6 Kinase (Biocarta) 1.80E-02 7.70E-02

Skeletal muscle hypertrophy is regulated via AKT mTOR pathway

(Biocarta)

2.00E-02 7.70E-02

CARM1 and Regulation of the Estrogen Receptor (Biocarta) 2.10E-02 7.70E-02

Neuropeptides VIP and PACAP inhibit the apoptosis of activated T cells

(Biocarta)

2.30E-02 7.70E-02

Estrogenresponsive protein Efp controls cell cycle and breast tumors growth

(Biocarta)

2.80E-02 7.70E-02

Role of BRCA1 BRCA2 and ATR in Cancer Susceptibility (Biocarta) 2.80E-02 7.70E-02

Role of ERBB2 in Signal Transduction and Oncology (Biocarta) 3.30E-02 7.70E-02

Role of Tob in Tcell activation (Biocarta) 3.30E-02 8.44E-02

Cell Cycle G2 M Checkpoint (Biocarta) 3.50E-02 7.70E-02

mTOR Signaling Pathway (Biocarta) 3.90E-02 7.70E-02

Effects of calcineurin in Keratinocyte Differentiation (Biocarta) 4.20E-02 7.70E-02

Nitrogen metabolism (KEGG) 3.00E-03 2.56E-02

AminoacyltRNA biosynthesis (KEGG) 3.00E-03 2.77E-02

Valine leucine and isoleucine degradation (KEGG) 1.90E-02 3.35E-02

Pentose phosphate pathway (KEGG) 6.00E-03 4.87E-02

Wnt signaling pathway (KEGG) 4.80E-02 8.28E-02

hsa-miR-556-
5p

Signaling Pathway from GProtein Families (Biocarta) 1.00E-03 4.86E-02 Paclitaxel

hsa-miR-637 Links between Pyk2 and Map Kinases (Biocarta) 1.00E-03 5.46E-02 Tivantinib

Pathways significantly associated with drug-associated miRNAs. Selection criteria for significant pathways were a permutation p-value below 0.05 and a Benjamini-

Hochberg adjusted p-value below 0.1. The respective associated drugs are listed and highlighted in orange for an association of the miRNA with resistance to the

respective drug and blue for an association with sensitivity.

https://doi.org/10.1371/journal.pone.0216400.t002
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multivariate analyses, 11 miRNAs involved in 13 miRNA-drug associations remained. Addi-

tional pathway analyses using available gene expression data gave insights into the associated

biology for 6 of the significant miRNAs. To assess the applicability of these miRNAs as clinical

biomarkers, further validation in independent sample series is needed to correct for possible

additional parameters influencing drug response which were not considered here. Separately,

the causal relation between the identified miRNA-drug associations in this hypothesis-generat-

ing study could be explored.

To try to understand the subtype independent miRNA-drug associations we discuss the

possible mechanistic links for the most significant results based on current state-of-the-art

knowledge.

The strongest miRNA-drug interaction was the association of hsa-miR-187-5p with Doce-

taxel resistance. This miRNA was additionally associated with Paclitaxel resistance. As taxanes

have been known for a long time for their anti-tumorigenic activity and have been studied

extensively [60], several resistance mechanisms are known: One of the main contributors to

taxane resistance is the overexpression of multidrug transporters (e.g. P-gp; HGNC symbol:

ABCB1) [61]. Besides, tubulin modifications (e.g. mutations) and alterations in the tubulin-

microtubule system have been found such as altered expression of tubulin isoforms or associ-

ated proteins (e.g. MAP4 and Stathmin) [61]. While we did not find a clear link between hsa-
miR-187-5p and one of these well-known resistance mechanisms, we found that this miRNA is

associated with the pathway “Cell cycle G2-M checkpoint” and the “MTOR signaling” pathway

(see Table 2). This is an interesting observation, as Paclitaxel is known to block cells between

the G2 and the mitotic phase of the cell cycle [60]. Furthermore, genes involved in the G2-M

checkpoint and MTOR signaling were differentially expressed in residual breast tumors after

Docetaxel treatment when compared to pre-treatment biopsies [62]. In our study the genes in

the G2-M checkpoint pathway are mainly downregulated in cell lines with high hsa-miR-187-
5p expression, arguing that this miRNA might target several of the involved genes or an

upstream regulator and in this way potentially increases cell cycle progression. Alternatively,

hsa-miR-187-5p could be co-regulated with the genes in this pathway and as a result might

affect events downstream.

The miRNA hsa-miR-106a-3p was also associated with Docetaxel and Paclitaxel resistance.

In the pathway analysis, 7 pathways were significantly associated with this miRNA. Looking

further into similarities between the pathways, it became clear that the genes JUN and FOS
were part of all pathways and were clearly upregulated. Unfortunately only little is known

about this miRNA and no link could be found between either the genes JUN and FOS or this

miRNA with resistance to the two taxanes Docetaxel and Paclitaxel. As the expression of this

miRNA is correlated to the expression of hsa-miR-187-5p in our study, this miRNA could act

in concert with hsa-miR-187-5p or its associated pathways but based on current knowledge the

role of this miRNA in taxane resistance remains to be clarified at this stage.

Within our drug screening, we had one PARP inhibitor, Veliparib [63] and we observed

that hsa-miR-182-5p was associated with resistance to this drug. This finding contrasts an ear-

lier study in which hsa-miR-182-5p was found to target BRCA1 and sensitized the breast cancer

cell line MDA-MB-231 to PARP inhibitors [64]. Neijenhuis et al. have studied miRNAs which

sensitize cells to the PARP inhibitor Olaparib using a large miRNA mimic screening, but did

not identify hsa-miR-182-5p as involved in drug sensitivity [65]. It is tempting to speculate that

different miRNAs might play a role in the action of different PARP inhibitors, but the genetic

makeup of studied cell lines/models might contribute [65]. Since our study contained a large

number of cell lines we reduced the influence of the genetic makeup on the identified miRNA-

drug association favoring a more general link with Veliparib response. In our study hsa-miR-
182-5p was associated with a large number of pathways, including the pathway “Cell cycle
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G1-S check-point” (see Table 2), which showed overall a downregulation. It remains, however,

unclear how the downregulation of this cell cycle checkpoint might exactly contribute to drug

resistance, although cell cycle changes have been earlier found as a drug resistance mechanism

for PARP inhibitors [63].

The drug Tivantinib targets the c-MET kinase and prevents it from downstream signaling

[66]. In our screening we found 3 miRNAs significantly associated with Tivantinib drug

response. Hsa-let-7d-5p and hsa-miR-18a-5p were associated with drug sensitivity and hsa-
miR-637 with drug resistance. Interestingly, others have found that hsa-miR-637 expression

leads to downregulation of STAT3 activity in hepatocellular carcinoma cells [67] and STAT3 is

one of the downstream activated proteins of c-MET activity [68]. Furthermore, HGF-c-MET

signaling also leads to activation of the PI3K/AKT pathway [69] and AKT1 has been identified

as a direct target of hsa-miR-637 in pancreatic ductal adenocarcinoma cells [70]. One can spec-

ulate that the inactivation of c-MET effector pathways (through AKT1 and STAT3) through

this miRNA characterizes cells which rely on different pathways for growth and survival and

therefore identifies cell lines inherently resistant to c-MET inhibitors.

Regarding Tivantinib sensitivity, one of the identified miRNAs was hsa-let-7d-5p. This

miRNA has been shown to be downregulated by STAT3 in breast cancer cells [71]. This con-

tradicts the above hypothesis that Tivantinib-sensitive cells are characterized by active STAT3
and high hsa-let-7d-5p expression and Tivantinib-resistant cells have inactive/low STAT3 and

high hsa-miR-637 expression. Nevertheless, we also observed a negative correlation between

hsa-miR-637 and hsa-let-7d-5p in line with their opposing association with drug sensitivity.

Other factors might play an additional role here. The last Tivantinib-associated miRNA, hsa-
miR-18a-5p, associated with drug sensitivity, did not show significantly correlated expression

with hsa-let-7d-5p. Others have found that hsa-miR-18a-5p targets PIAS3 directly and in this

way causes an increase in STAT3 transcriptional activity in gastric cancer cell lines [72] fitting

with the hypothesis for hsa-miR-637.

For the proteasome inhibitor Bortezomib [53] several resistance mechanisms have been

found. Thioredoxin reductase 1 (HGNC symbol: TXNRD1) upregulation has been linked to

Bortezomib resistance via upregulation of NF-κB-regulated genes in myeloma cells [73], as

well as the upregulation of heat shock proteins and related genes in several cancer types [74].

Further resistance mechanisms are upregulation of proteasome subunits or increased protea-

some activity which were observed in mesothelioma and myeloma [74]. Upregulation of the

aggresome/autophagy pathway (both in myeloma), and constitutive NF-κB or AKT signaling

in multiple myeloma have also been observed [75]. Hsa-let-7a-5p was associated with Bortezo-

mib sensitivity in our study. This miRNA has been shown to target KBRAS2 (NKIRAS2), an

inhibitor of NF-κB signaling and seems to be itself upregulated upon NF-κB signaling in

human macrophages [76]. Hsa-let-7a-5p targets furthermore a negative regulator of NF-κB

signaling, TNFAIP3, in HEK293T cells [77]. NF-κB pathway inhibition is one of the effects of

Bortezomib treatment [74], but generally activation of NF-κB signaling has been implicated in

Bortezomib resistance [75]. Interestingly, there has been one report stating that upregulation

of NF-κB signaling due to treatment with Lapatinib sensitized cells to Bortezomib in triple-

negative breast cancer [78]. It remains therefore unclear whether upregulation of NF-κB sig-

naling aids to sensitize cells to Bortezomib or increases drug resistance in breast cancer and

whether hsa-let-7a-5p increases Bortezomib sensitivity via downregulation of NKIRAS2 and

TNFAIP3.

Sensitivity to the FGFR inhibitor JNJ-707 [40] was associated with hsa-miR-135a-3p, how-

ever, so far very little is known about this miRNA and unfortunately no information support-

ing the association with this drug could be found.
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For the histone deacetylase (HDAC) inhibitor Panobinostat [55] several resistance mecha-

nisms have been observed such as overexpression of the anti-apoptotic protein Bcl-2 in cutane-

ous T-cell lymphoma patients [79]. Of interest is also the observation that Panobinostat

treatment led to activation of NF-κB signaling in leukemic cells and the blockage of this signal-

ing increased sensitivity to the drug [80]. In our study, we found that the expression of hsa-
miR-185-3p was associated with sensitivity to Panobinostat. However, little is known so far

about the functions of this miRNA and there are no known targets which could explain how

this miRNA might sensitize cells to Panobinostat.

For the farnesyltransferase inhibitor Tipifarnib [56], there are a few reports on resistance

mechanisms. In previously untreated AML patients a 2-gene-classifier has been found which

can predict response to Tipifarnib [81]. Patients responding to treatment are characterized by

high expression of RASGRP1, a guanine nucleotide exchange factor which can activate RAS

and low expression of APTX, a protein involved in DNA excision repair [81]. One of the prop-

erties Tipifarnib has is the inhibition of RAS farnesylation [82] and the upregulation of

RASGRP1 might characterize cancer cells which rely on RAS signaling. In our study hsa-miR-
629-5p was associated with Tipifarnib resistance, however, based on the current knowledge

about this miRNA, it is unclear if there is a direct mechanistic link between the observed drug

resistance and the miRNA and how this miRNA might influence drug response.

Among the miRNA-drug associations where subtype played a role, hsa-miR-23a-3p was

expressed lower in luminal cell lines. Others have found that this miRNA targets the progester-

one receptor [83] and seems to be downregulated by estradiol [84], which could support pref-

erential expression of this miRNA in triple-negative cell lines. Hsa-miR-338-3p was expressed

lower in the basal subtype and higher in the luminal subtype. The basal subtype in cell lines is

characterized by EGFR expression in contrast to the luminal subtype which typically lacks

expression of this protein[43]. Interestingly it has been shown that EGFR expression downre-

gulates hsa-miR-338-3p expression[85], matching our observations on the breast cancer cell

lines.

5. Conclusions

We were able to identify several miRNAs associated with drug resistance or drug sensitivity in

our large panel of breast cancer cell lines. Several of the miRNAs found in our screen have

been linked to pathways targeted by the drugs or genes involved in drug-resistance mecha-

nisms. Next to those associations, we also identified a number of miRNAs, which have not

been researched much in the context of drug sensitivity/resistance so far but may hold great

potential once more is known about their biology.

Besides identifying miRNAs associated with drugs already used in the clinic we also identi-

fied miRNAs associated with several new anticancer agents, which are expected to enter the

clinic in the coming years. Since biomarkers can help in discriminating those patients which

will respond better to therapy and miRNAs are well measurable, further research into this

topic will be of great value and might potentially validate these miRNAs as biomarkers.

In conclusion, our hypothesis-generating study suggests that miRNAs could be used as pre-

dictors of drug response and once independently validated and/or experimentally confirmed

holds great potential for an application in the clinic.

Supporting information

S1 Table. MiRNA expression data for the cell line OCUB-M. MiRNA expression data for the

cell line OCUB-M is given including the respective probe ID for each miRNA assessed.

(XLSX)
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S2 Table. Annotation information for the miRNAs associated with drug response. The for-

mer and current miRNA nomenclature is given, together with the miRBase [45] MIMAT iden-

tifier and the Exiqon oligonucleotide probe ID.

(XLSX)

S3 Table. Overview of all drugs and the employed analysis method. All drugs used in this

study are listed with their respective type of analysis. The IC50 values and profiles of all drugs

are available in the supplemental data of a previous publication [40].

(XLSX)

S4 Table. Multivariate analysis with molecular breast cancer subtype. MiRNAs significantly

associated with molecular breast cancer subtypes. Breast cancer subtypes assessed include

luminal, basal and normal-like subtype. MiRNAs which are not associated with any of the

three subtypes are printed in bold.

(XLSX)

S5 Table. MiRNAs associated with Tivantinib. Spearman correlation coefficients among the

different miRNAs are listed and the significant associations are highlighted in orange or blue

depending on the correlation type. Orange = significant negative association,

blue = significant positive association. Furthermore, all p-values of the associations are given.

(XLSX)

S6 Table. MiRNAs associated with Docetaxel. Spearman correlation coefficients among the

different miRNAs are listed and the significant associations are highlighted in orange or blue

depending on the correlation type. Orange = significant negative association,

blue = significant positive association. Furthermore, all p-values of the associations are given.

(XLSX)

S7 Table. MiRNAs associated with Paclitaxel. Spearman correlation coefficients among the

different miRNAs are listed and the significant associations are highlighted in orange or blue

depending on the correlation type. Orange = significant negative association,

blue = significant positive association. Furthermore, all p-values of the associations are given.

(XLSX)

S8 Table. MiRNA expression and IC50 values per cell line. MiRNA expression data for the

significantly associated miRNAs, not influenced by subtype are given per cell line. The IC50

values of the respective associated drug are given as well per cell line. Cell lines are color-coded

based on their subtype: green = luminal, orange = basal, black = normal-like. MiRNA expres-

sion values and IC50 values are colored in a red-green color range with highest values in red

and lowest in green.

(XLSX)
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