38 research outputs found

    The role of calcium ions in toxic cell injury.

    Get PDF
    Calcium ions have been increasingly implicated as a mediator of the mechanisms generating lethal cell injury under a variety of pathologic circumstances. An overview of the various roles suggested for such alterations in cellular calcium homeostasis is presented. The central role of plasma membrane damage in the genesis of irreversible cell injury is used to divide the postulated roles for calcium ions into two major mechanisms. On the one hand, calcium ions have been proposed as mediators of the functional consequences of plasma membrane injury. An influx of extracellular calcium ions across a damaged permeability barrier and down a steep concentration gradient may convert potentially reversible injury into irreversible injury. On the other hand, alterations in intracellular calcium homeostasis are postulated to participate in the mechanisms generating potentially lethal plasma membrane injury. The release of calcium stores sequestered within intracellular organelles raises the cytosolic concentration of free calcium, a process that may activate, in turn, a number of membrane-disruptive processes. The data supporting these two distinct actions of calcium are reviewed and discussed

    A global threats overview for Numeniini populations: synthesising expert knowledge for a group of declining migratory birds

    Get PDF
    The Numeniini is a tribe of thirteen wader species (Scolopacidae, Charadriiformes) of which seven are near-threatened or globally threatened, including two critically endangered. To help inform conservation management and policy responses, we present the results of an expert assessment of the threats that members of this taxonomic group face across migratory flyways. Most threats are increasing in intensity, particularly in non-breeding areas, where habitat loss resulting from residential and commercial development, aquaculture, mining, transport, disturbance, problematic invasive species, pollution and climate change were regarded as having the greatest detrimental impact. Fewer threats (mining, disturbance, problematic native species and climate change) were identified as widely affecting breeding areas. Numeniini populations face the greatest number of non-breeding threats in the East Asian-Australasian Flyway, especially those associated with coastal reclamation; related threats were also identified across the Central and Atlantic Americas, and East Atlantic flyways. Threats on the breeding grounds were greatest in Central and Atlantic Americas, East Atlantic and West Asian flyways. Three priority actions were associated with monitoring and research: to monitor breeding population trends (which for species breeding in remote areas may best be achieved through surveys at key non-breeding sites), to deploy tracking technologies to identify migratory connectivity, and to monitor land-cover change across breeding and non-breeding areas. Two priority actions were focused on conservation and policy responses: to identify and effectively protect key non-breeding sites across all flyways (particularly in the East Asian - Australasian Flyway), and to implement successful conservation interventions at a sufficient scale across human-dominated landscapes for species’ recovery to be achieved. If implemented urgently, these measures in combination have the potential to alter the current population declines of many Numeniini species and provide a template for the conservation of other groups of threatened species

    A Late Holocene Stable Isotope and Carbon Accumulation Record from Teringi Bog in Southern Estonia

    No full text
    Radiocarbon-dated peat cores collected from an ombrotrophic bog in southern Estonia record shifting environmental conditions and carbon accumulation rates in northern Europe during the late Holocene. Modern observations indicate that the water balance of the peatland is highly influenced by changes in relative humidity, followed by temperature and precipitation. The modern δ18O and δ2H values of surface water suggest that the groundwater is an integration of several months of precipitation. There also appears to be little or no direct influence of surface evaporation on the water within the bog, suggesting that water loss is preferentially through transpiration and sub-surface flow. Bulk peat δ13C values exhibit a trend of higher values through the late Holocene, suggesting a pattern of overall increased surface wetness. The δ15N values were low from ~4130 to 3645 cal yr BP, suggesting drier conditions, followed by intermediate values until ~2995 cal yr BP. The δ15N values decrease again from ~2995 to 2470 cal yr BP, suggesting a return to drier conditions, followed by intermediate values until ~955 cal yr BP. The δ15N values were high, suggesting wetter conditions from ~955 to 250 cal yr BP, followed by intermediate values through the modern. Carbon accumulation rates were low to intermediate from ~4200 to 2470 cal yr BP, followed by intermediate-to-high values until ~1645 cal yr BP. Carbon accumulation rates were then low until ~585 cal yr BP, followed by intermediate values through the modern. The geochemical data, combined with observed changes in peat composition and regional proxies of temperature and water table fluctuations through the late Holocene, suggest that carbon accumulation rates were relatively low under dry and warm conditions, whereas accumulation was generally higher (up to ~80 g C m−2 yr−1) when the climate was wetter and/or colder. These findings further suggest that future environmental changes affecting the regional water balance and temperature will impact the potential for northern peatlands to capture and store carbon
    corecore