325 research outputs found

    Anxiety, but not depression, mediates stress and somatic symptoms in Chinese

    Get PDF
    Posters: abstract no. 2980Conference Theme: Stretching the Boundaries: From Mechanisms of Disease to Models of Healthpublished_or_final_versio

    Second-Generation Curvelets on the Sphere

    Get PDF
    Curvelets are efficient to represent highly anisotropic signal content, such as a local linear and curvilinear structure. First-generation curvelets on the sphere, however, suffered from blocking artefacts. We present a new second-generation curvelet transform, where scale-discretized curvelets are constructed directly on the sphere. Scale-discretized curvelets exhibit a parabolic scaling relation, are well localized in both spatial and harmonic domains, support the exact analysis and synthesis of both scalar and spin signals, and are free of blocking artefacts. We present fast algorithms to compute the exact curvelet transform, reducing computational complexity from O(L5) to O(L3 log2 L) for signals band limited at L. The implementation of these algorithms is made publicly available. Finally, we present an illustrative application demonstrating the effectiveness of curvelets for representing directional curve-like features in natural spherical images

    Study On The Effect Of Nitrite And Free Nitrous Acid On Cultivation Of Microalgae

    Get PDF
    Chlorella vulgaris was widely used as potential nutrients elimination microalgae in wastewater treatment plant due to its high removal efficiency of total nitrogen (TN) and total phosphorous (TP). The aim of this study was to study the effect of nitrite addition on microalgae cultivation by introduce 0 mg/L, 50 mg/L, and 100 mg/L of nitrite into batch reactors respectively, to investigate the effect of free nitrous acid (FNA) on microalgae cultivation by controlling microalgae cultivation condition in pH 4, 6, and 8 with addition 50 mg/L of nitrite into batch reactors respectively, and to evaluate the influence of FNA concentration on the extracellular polymeric substances (EPS) secretion from microalgae by conducting EPS extraction as well as proteins and polysaccharides analysis. The results show that 50 mg/L of nitrite introduced into microalgae cultivation had highest growth rate in the result of oxygen inhibition had been eliminated, while 100 mg/L of nitrite introduced into microalgae cultivation had lowest growth rate because of high FNA concentration presented. Moreover, microalgae cultivation with addition 50 mg/L of nitrite and pH 4 culturing condition show the lowest growth rate, and the growth rate for microalgae cultivated at pH 8 had slightly higher than microalgae cultivated at pH 6. From the aspects of proteins and polysaccharides released in EPS, the peak points for protein (PN) concentration released with condition of pH 4, 6, 8 were 156.06 ug/mL (at first day), 171.35 ug/mL (at seventh day), and 173.71 ug/mL (at ninth day), while polysaccharide (PS) released with pH 4 was up to 91.02 ug/mL at third day and reduced to 13.43 ug/mL at seventh day which almost similar trend with others cultivation systems. In overall, microalgae cultivation with addition 50 mg/L of N and pH culturing condition more than 6 could enhance the microalgae cultivation

    Multi-Slot Allocation Protocols for Massive IoT Devices with Small-Size Uploading Data

    Get PDF
    The emergence of Internet of Things applications introduces new challenges such as massive connectivity and small data transmission. In traditional data transmission protocols, an ID (i.e., IP address or MAC address) is usually included in a packet so that its receiver is able to know who sent the packet. However, this introduces the big head-small body problem for light payload. To address this problem, the Hint protocols have been proposed. The main idea is to 'encode' information in a tiny broadcast Hint message that allows devices to 'decode' their transmission slots. Thus, it can significantly reduce transmission and contention overheads. In this letter, we extend eHint to support multi-slot data transmissions. Several efficient protocols are proposed. Our simulation results validate that the protocols can significantly increase the number of successfully transmitted devices, channel utilization, and payload of transmitted devices compared with eHint

    How to Reduce Unexpected eMBMS Session Disconnection: Design and Performance Analysis

    Get PDF
    In 3GPP eMBMS, sometimes sessions will be disconnected unexpectedly due to the miss of session keys. Although rekeying can prevent old users from getting multicast data, it also causes authorized users to miss subsequent data if they miss the key update messages. Thus, re-authentication is needed to obtain lost keys from KMM. We point out this problem in our previous work 1. In this paper, we further propose a new KeySet algorithm, which can pre-issue a number of keys to users when they join eMBMS. The advantage is that a user can still decode multicast data even if it misses some key updates tentatively. However, the cost is that allowing some old users to freely enjoying multicast for some time. In this paper, we quantify the tradeoff and derive the optimal case

    eHint: An Efficient Protocol for Uploading Small-Size IoT Data

    Get PDF
    IoT (Internet of Things) has attracted a lot of attention recently. IoT devices need to report their data or status to base stations at various frequencies. The IoT communications observed by a base station normally exhibit the following characteristics: (1) massively connected, (2) lightly loaded per packet, and (3) periodical or at least mostly predictable. The current design principals of communication networks, when applied to IoT scenarios, however, do not fit well to these requirements. When a large number of devices contend to send small packets, the signaling overhead is not cost-effective. To address this problem, our previous work [1] proposes the Hint protocol, which is slot-based and schedule- oriented for uploading IoT devices' data. In this work, we extend [1] to support data transmissions for multiple resource blocks. We assume that the uplink payloads from IoT devices are small, each taking very few slots (or resource blocks), but devices are massive. The main idea is to "encode" information in a tiny broadcast that allows each device to "decode" its transmission slots, thus significantly reducing transmission overheads and contention overheads. Our simulation results verify that the protocol can significantly increase channel utilization compared with traditional schemes

    Polarised radiative transfer, rotation measure fluctuations and large-scale magnetic fields

    Get PDF
    Faraday rotation measure at radio wavelengths is commonly used to diagnose large-scale magnetic fields. It is argued that the length-scales on which magnetic fields vary in large-scale diffuse astrophysical media can be inferred from correlations in the observed RM. RM is a variable which can be derived from the polarised radiative transfer equations in restrictive conditions. This paper assesses the usage of RMF (rotation measure fluctuation) analyses for magnetic field diagnostics in the framework of polarised radiative transfer. We use models of various magnetic field configurations and electron density distributions to show how density fluctuations could affect the correlation length of the magnetic fields inferred from the conventional RMF analyses. We caution against interpretations of RMF analyses when a characteristic density is ill-defined, e.g. in cases of log-normal distributed and fractal-like density structures. As the spatial correlations are generally not the same in the line-of-sight longitudinal direction and the sky plane direction, one also needs to clarify the context of RMF when inferring from observational data. In complex situations, a covariant polarised radiative transfer calculation is essential to capture all aspects of radiative and transport processes, which would otherwise ambiguate the interpretations of magnetism in galaxy clusters and larger-scale cosmological structures

    Polarized radiative transfer, rotation measure fluctuations, and large-scale magnetic fields

    Get PDF
    Faraday rotation measure (RM) at radio wavelengths is commonly used to diagnose large-scale magnetic fields. It is argued that the length-scales on which magnetic fields vary in large-scale diffuse astrophysical media can be inferred from correlations in the observed RM. RM is a variable which can be derived from the polarized radiative transfer equations in restrictive conditions. This paper assesses the usage of rotation measure fluctuation (RMF) analyses for magnetic field diagnostics in the framework of polarized radiative transfer. We use models of various magnetic field configurations and electron density distributions to show how density fluctuations could affect the correlation length of the magnetic fields inferred from the conventional RMF analyses. We caution against interpretations of RMF analyses when a characteristic density is ill defined, e.g. in cases of lognormal-distributed and fractal-like density structures. As the spatial correlations are generally not the same in the line-of-sight longitudinal direction and the sky plane direction, one also needs to clarify the context of RMF when inferring from observational data. In complex situations, a covariant polarized radiative transfer calculation is essential to capture all aspects of radiative and transport processes, which would otherwise ambiguate the interpretations of magnetism in galaxy clusters and larger scale cosmological structures

    BRE (brain and reproductive organ-expressed (TNFRSF1A modulator))

    Get PDF
    Review on BRE (brain and reproductive organ-expressed (TNFRSF1A modulator)), with data on DNA, on the protein encoded, and where the gene is implicated
    corecore