239 research outputs found

    Bio-inspired Tensegrity Soft Modular Robots

    Get PDF
    In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity mod-ules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.Comment: 12 pages, 7 figures, submitted to Living Machine conference 201

    Severity of Nonalcoholic Fatty Liver Disease is Associated with Development of Metabolic Syndrome: Results of a 5-Year Cohort Study

    Get PDF
    Aims: Nonalcoholic fatty liver disease (NAFLD) is considered to be a hepatic manifestation of metabolic syndrome (MS). However, a few studies have examined the effect of NAFLD on the development of MS. We evaluated the relationship between the development of MS and clinical severity of NAFLD according to alanine aminotransferase (ALT) levels. Methods: A retrospective cohort study was conducted. Participants who underwent abdominal ultrasonography and blood samplings for health check-ups both in 2005 and 2010 were recruited. NAFLD was diagnosed if a person showed fatty liver on ultrasonography without significant alcohol consumption. Subjects with MS at baseline were excluded. Results: A total of 2,728 subjects met the inclusion criteria. Fatty liver (FL) with normal ALT was found in 369 (13.5%) subjects and FL with elevated ALT in 328 (12.0%). During 5 years of follow up, 582 (21.3%) incident cases of MS developed between 2005 and 2010. The incidence of MS was higher in patients with NAFLD compared to control group (41.2% in FL with elevated ALT, 34.7% in FL with normal ALT and 15.7% in control, p<0.001). Multivariate analysis showed that odds ratio (OR) and 95% confidence interval (CI) for MS increased according to the severity of NAFLD [OR (95% CI), 1.29 (0.97βˆ’1.71) in FL with normal ALT and 1.54 (1.18βˆ’1.33) in FL with elevated ALT, p=0.01]. Conclusions: We have demonstrated that development of MS is significantly increased according to the clinical severity of NAFLD. These findings have implications in the clinical availability of NAFLD as a predictor of MS

    Towards Intelligent Crowd Behavior Understanding through the STFD Descriptor Exploration

    Get PDF
    Realizing the automated and online detection of crowd anomalies from surveillance CCTVs is a research-intensive and application-demanding task. This research proposes a novel technique for detecting crowd abnormalities through analyzing the spatial and temporal features of input video signals. This integrated solution defines an image descriptor (named spatio-temporal feature descriptor - STFD) that reflects the global motion information of crowds over time. A CNN has then been adopted to classify dominant or large-scale crowd abnormal behaviors. The work reported has focused on: 1) detecting moving objects in online (or near real-time) manner through spatio-temporal segmentations of crowds that is defined by the similarity of group trajectory structures in temporal space and the foreground blocks based on Gaussian Mixture Model (GMM) in spatial space; 2) dividing multiple clustered groups based on the spectral clustering method by considering image pixels from spatio-temporal segmentation regions as dynamic particles; 3) generating the STFD descriptor instances by calculating the attributes (i.e., collectiveness, stability, conflict and crowd density) of particles in the corresponding groups; 4) inputting generated STFD descriptor instances into the devised convolutional neural network (CNN) to detect suspicious crowd behaviors. The test and evaluation of the devised models and techniques have selected the PETS database as the primary experimental data sets. Results against benchmarking models and systems have shown promising advancements of this novel approach in terms of accuracy and efficiency for detecting crowd anomalies

    Towards Intelligent Crowd Behavior Understanding through the STFD Descriptor Exploration

    Get PDF
    Realizing the automated and online detection of crowd anomalies from surveillance CCTVs is a research-intensive and application-demanding task. This research proposes a novel technique for detecting crowd abnormalities through analyzing the spatial and temporal features of input video signals. This integrated solution defines an image descriptor (named spatio-temporal feature descriptor - STFD) that reflects the global motion information of crowds over time. A CNN has then been adopted to classify dominant or large-scale crowd abnormal behaviors. The work reported has focused on: 1) detecting moving objects in online (or near real-time) manner through spatio-temporal segmentations of crowds that is defined by the similarity of group trajectory structures in temporal space and the foreground blocks based on Gaussian Mixture Model (GMM) in spatial space; 2) dividing multiple clustered groups based on the spectral clustering method by considering image pixels from spatio-temporal segmentation regions as dynamic particles; 3) generating the STFD descriptor instances by calculating the attributes (i.e., collectiveness, stability, conflict and crowd density) of particles in the corresponding groups; 4) inputting generated STFD descriptor instances into the devised convolutional neural network (CNN) to detect suspicious crowd behaviors. The test and evaluation of the devised models and techniques have selected the PETS database as the primary experimental data sets. Results against benchmarking models and systems have shown promising advancements of this novel approach in terms of accuracy and efficiency for detecting crowd anomalies

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Organochlorine Pesticides in Consumer Fish and Mollusks of Liaoning Province, China: Distribution and Human Exposure Implications

    Get PDF
    Fish and mollusk samples were collected from markets located in 12 cities in Liaoning province, China, during August and September 2007, and 22 organochlorine pesticides (OCPs) were detected. DDT, HCH, endosulfan, chlordane, and HCB were the dominating OCPs, with mean concentrations and ranges of, respectively, 15.41 and 0.57 to 177.56Β ng/g, 0.84 and below detection limit (BDL) to 22.99Β ng/g, 1.31 and BDL to 13.1Β ng/g, 1.05 and BDL to 15.68Β ng/g, and 0.63 and BDL to 9.21Β ng/g in all fish and mollusk samples. The concentrations of other OCPs generally were low and were detectable in a minority of samples, reflecting the low levels of these OCPs in the study region. In general, OCP concentrations were obviously higher in fish than in mollusks, and higher in freshwater fish than in marine fish, which indicated, first, that freshwater fish are more easily influenced than seawater fish and mollusks by OCP residues in agricultural areas and, second, that there are different biota accumulation factors for OCPs between fish and mollusk. To learn the consumption of fish and mollusk, 256 questionnaires were sent to families in 12 cities of Liaoning province. Using the contamination data, average estimated daily intakes of OCPs via fish and mollusk consumption were calculated, which were used for exposure assessment. The public health risks caused by exposure to OCPs in the course of fish and mollusk consumption were compared to noncancer benchmarks and cancer benchmarks

    Serial interferon-gamma release assays during treatment of active tuberculosis in young adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of interferon-Ξ³ release assay (IGRA) in monitoring responses to anti-tuberculosis (TB) treatment is not clear. We evaluated the results of the QuantiFERON-TB Gold In-tube (QFT-GIT) assay over time during the anti-TB treatment of adults with no underlying disease.</p> <p>Methods</p> <p>We enrolled soldiers who were newly diagnosed with active TB and admitted to the central referral military hospital in South Korea between May 1, 2008 and September 30, 2009. For each participant, we preformed QFT-GIT assay before treatment (baseline) and at 1, 3, and 6 months after initiating anti-TB medication.</p> <p>Results</p> <p>Of 67 eligible patients, 59 (88.1%) completed the study protocol. All participants were males who were human immunodeficiency virus (HIV)-negative and had no chronic diseases. Their median age was 21 years (range, 20-48). Initially, 57 (96.6%) patients had positive QFT-GIT results, and 53 (89.8%), 42 (71.2%), and 39 (66.1%) had positive QFT-GIT results at 1, 3, and 6 months, respectively. The IFN-Ξ³ level at baseline was 5.31 Β± 5.34 IU/ml, and the levels at 1, 3, and 6 months were 3.95 Β± 4.30, 1.82 Β± 2.14, and 1.50 Β± 2.12 IU/ml, respectively. All patients had clinical and radiologic improvements after treatment and were cured. A lower IFN-Ξ³ level, C-reactive protein β‰₯ 3 mg/dl, and the presence of fever (β‰₯ 38.3Β°C) at diagnosis were associated with negative reversion of the QFT-GIT assay.</p> <p>Conclusion</p> <p>Although the IFN-Ξ³ level measured by QFT-GIT assay decreased after successful anti-TB treatment in most participants, less than half of them exhibited QFT-GIT reversion. Thus, the reversion to negativity of the QFT-GIT assay may not be a good surrogate for treatment response in otherwise healthy young patients with TB.</p

    Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer

    Get PDF
    OBJECTIVE: Both variations in the interleukin-10 (IL10) gene and environmental factors are thought to influence inflammation and gastric carcinogenesis. Therefore, we investigated the associations between IL10 polymorphisms, Helicobacter pylori (H. pylori) infection, and smoking in noncardia gastric carcinogenesis in Koreans. METHODS: We genotyped three promoter polymorphisms (-1082A>G, -819T>C, and -592 A>C) of IL10 in a case-control study of 495 noncardia gastric cancer patients and 495 sex- and age-matched healthy controls. Multiple logistic regression models were used to detect the effects of IL10 polymorphisms, H. pylori infection, and smoking on the risk of gastric cancer, which was stratified by the histological type of gastric cancer. RESULTS: The IL10-819C and -592C alleles were found to have complete linkage disequilibrium, and all three IL10 polymorphisms were associated with an increased risk of intestinal-type noncardia gastric cancer. These associations were observed only in H. pylori-positive subjects and current smokers. A statistically significant interaction between the IL10-592 genotype and H. pylori infection on the risk of intestinal-type gastric cancer was observed (P for interaction β€Š=β€Š0.047). In addition, H. pylori-positive smokers who were carriers of either the IL10-1082G (OR [95% CI] β€Š=β€Š17.76 [6.17-51.06]) or the -592C (OR [95% CI] β€Š=β€Š8.37 [2.79-25.16]) allele had an increased risk of intestinal-type gastric cancer compared to H. pylori-negative nonsmokers homozygous for IL10-1082A and -592A, respectively. The interaction between the IL10-1082 polymorphism and the combined effects of H. pylori infection and smoking tended towards significance (P for interaction β€Š=β€Š0.080). CONCLUSIONS: Inflammation-related genetic variants may interact with H. pylori infection and smoking to increase the risk of noncardia gastric cancer, particularly the intestinal-type. These findings may be helpful in identifying individuals at an increased risk for developing noncardia gastric cancer

    Nucleolar Localization of GLTSCR2/PICT-1 Is Mediated by Multiple Unique Nucleolar Localization Sequences

    Get PDF
    The human glioma tumor suppressor candidate region 2 gene product, GLTSCR2, also called β€˜protein interacting with carboxyl terminus 1’ (PICT-1), has been implicated in the regulation of two major tumor suppressor proteins, PTEN and p53, and reported to bind the membrane-cytoskeleton regulator of cell signaling, Merlin. PICT-1 is a nucleolar protein, conserved among eukaryotes, and its yeast homolog has been functionally associated with ribosomal RNA processing. By means of confocal microscopy of EGFP and myc-tagged PICT-1 fusion proteins, we delineate that the nucleolar localization of PICT-1 is mediated by two independent nucleolar localization sequences (NoLS). Unlike most NoLSs, these NoLSs are relatively long with flexible boundaries and contain arginine and leucine clusters. In addition, we show that PICT-1 exhibits a nucleolar distribution similar to proteins involved in ribosomal RNA processing, yet does not colocalize precisely with either UBF1 or Fibrillarin under normal or stressed conditions. Identification of the precise location of PICT-1 and the signals that mediate its nucleolar localization is an important step towards advancing our understanding of the demonstrated influence of this protein on cell fate and tumorigenesis

    Biophysical mechanisms of single-cell interactions with microtopographical cues

    Get PDF
    Biophysical cues encoded in the extracellular matrix (ECM) are increasingly being explored to control cell behavior in tissue engineering applications. Recently, we showed that cell adhesion to microtopographical structures (β€œmicropegs”) can suppress proliferation in a manner that may be blunted by inhibiting cellular contractility, suggesting that this effect is related to altered cell-scaffold mechanotransduction. We now directly investigate this possibility at the microscale through a combination of live-cell imaging, single-cell mechanics methods, and analysis of gene expression. Using time-lapse imaging, we show that when cells break adhesive contacts with micropegs, they form F-actin-filled tethers that extend and then rupture at a maximum, critical length that is greater than trailing-edge tethers observed on topographically flat substrates. This critical tether length depends on myosin activation, with inhibition of Rho-associated kinase abolishing topography-dependent differences in tether length. Using cellular de-adhesion and atomic force microscopy indentation measurements, we show that the micropegs enhance cell-scaffold adhesive interactions without changing whole-cell elasticity. Moreover, micropeg adhesion increases expression of specific mechanotransductive genes, including RhoA GTPase and myosin heavy chain II, and, in myoblasts, the functional marker connexin 43. Together, our data support a model in which microtopographical cues alter the local mechanical microenvironment of cells by modulating adhesion and adhesion-dependent mechanotransductive signaling
    • …
    corecore