56 research outputs found
Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex
Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences
Brain activation of the defensive and appetitive survival systems in obsessive compulsive disorder
Several studies have shown that basic emotions are responsible for a significant enhancement of early visual processes and increased activation in visual processing brain regions. It may be possible that the cognitive uncertainty and repeated behavioral checking evident in Obsessive Compulsive Disorder (OCD) is due to the existence of abnormalities in basic survival circuits, particularly those associated with the visual processing of the physical characteristics of emotional-laden stimuli. The objective of the present study was to test if patients with OCD show evidence of altered basic survival circuits, particularly those associated with the visual processing of the physical characteristics of emotional stimuli. Fifteen patients with OCD and 12 healthy controls underwent functional magnetic resonance imaging acquisition while being exposed to emotional pictures, with different levels of arousal, intended to trigger the defensive and appetitive basic survival circuits. Overall, the present results seem to indicate dissociation in the activity of the defense and appetitive survival systems in OCD. Results suggest that the clinical group reacts to basic threat with a strong activation of the defensive system mobilizing widespread brain networks (i.e., frontal, temporal, occipital-parietal, and subcortical nucleus) and blocking the activation of the appetitive system when facing positive emotional triggers from the initial stages of visual processing (i.e., superior occipital gyrus)
Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM
<p>Abstract</p> <p>Background</p> <p>Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS). The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients <it>with </it>co-morbid obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD) using voxel-based morphometry (VBM) in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects.</p> <p>Results</p> <p>In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG), but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase.</p> <p>Conclusions</p> <p>From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.</p
Reduced prefrontal gyrification in obsessive–compulsive disorder
Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessive–compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (p = 0.021) and a trend for a decreased A-GI in the right hemisphere (p = 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease
Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy
Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive–compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1–8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative–limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative–limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology
Disproportionate Alterations in the Anterior and Posterior Insular Cortices in Obsessive–Compulsive Disorder
Recent studies have reported that the insular cortex is involved in the pathophysiology of obsessive–compulsive disorder (OCD). However, specific morphometric abnormalities of the insular subregions remain unclear. In this study, we examined insular cortical volume to determine whether the volume of the anterior and posterior insular cortices of unmedicated OCD patients differed according to different symptom dimensions.Using magnetic resonance imaging, we measured the gray matter volumes of the insular cortex and its subregions (anterior and posterior divisions) in 41 patients with OCD (31 drug-naïve and 10 non-medicated) and 53 healthy controls. Volumetric measures of the insular cortex were compared according to different OC symptoms. Enlarged anterior and reduced posterior insular cortices were observed in OCD patients. The insular volumetric alterations were more significant in OCD patients with predominant checking rather than cleaning symptoms when compared with healthy controls.Our results suggest the presence of unbalanced anterior and posterior insular volumetric abnormalities in unmedicated OCD patients and emphasize the distinct role of the insular cortex in different OC symptoms. We propose that the insular morphometric alterations may influence the modulation of interoceptive processing, the insular functional role, in OCD patients with different symptoms
Abnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder and Changes after Medication
BACKGROUND: Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi-parameter maps of diffusion tensor imaging (DTI). However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment. OBJECTIVE: To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication. METHODOLOGY AND PRINCIPAL FINDINGS: Parameter maps of DTI, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were acquired from 27 unmedicated OCD patients (including 13 drug-naïve individuals) and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI) therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain. CONCLUSION: Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primarily located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment
When Too Much Is Not Enough: Obsessive-Compulsive Disorder as a Pathology of Stopping, Rather than Starting
Background: In obsessive-compulsive disorder (OCD), individuals feel compelled to repeatedly perform security-related behaviors, even though these behaviours seem excessive and unwarranted to them. The present research investigated two alternative ways of explaining such behavior: (1) a dysfunction of activation—a starting problem—in which the level of excitation in response to stimuli suggesting potential danger is abnormally strong; versus (2) a dysfunction of termination— a stopping problem—in which the satiety-like process for shutting down security-related thoughts and actions is abnormally weak. Method: In two experiments, 70 patients with OCD (57 with washing compulsions, 13 with checking compulsions) and 72 controls were exposed to contamination cues—immersing a hand in wet diapers —and later allowed to wash their hands, first limited to 30 s and then for as long as desired. The intensity of activation of security motivation was measured objectively by change in respiratory sinus arrythmia. Subjective ratings (e.g., contamination) and behavioral measures (e.g., duration of hand washing) were also collected. Results: Compared to controls, OCD patients with washing compulsions did not differ significantly in their levels of initial activation to the threat of contamination; however, they were significantly less able to reduce this activation by engaging in the corrective behavior of hand-washing. Further, the deactivating effect of hand-washing in OCD patients with checkin
Resting-State Functional Connectivity between Fronto-Parietal and Default Mode Networks in Obsessive-Compulsive Disorder
Background: Obsessive-compulsive disorder (OCD) is characterized by an excessive focus on upsetting or disturbing thoughts, feelings, and images that are internally-generated. Internally-focused thought processes are subserved by the ‘‘default mode network’ ’ (DMN), which has been found to be hyperactive in OCD during cognitive tasks. In healthy individuals, disengagement from internally-focused thought processes may rely on interactions between DMN and a frontoparietal network (FPN) associated with external attention and task execution. Altered connectivity between FPN and DMN may contribute to the dysfunctional behavior and brain activity found in OCD. Methods: The current study examined interactions between FPN and DMN during rest in 30 patients with OCD (17 unmedicated) and 32 control subjects (17 unmedicated). Timecourses from seven fronto-parietal seeds were correlated across the whole brain and compared between groups. Results: OCD patients exhibited altered connectivity between FPN seeds (primarily anterior insula) and several regions of DMN including posterior cingulate cortex, medial frontal cortex, posterior inferior parietal lobule, and parahippocampus. These differences were driven largely by a reduction of negative correlations among patients compared to controls. Patients also showed greater positive connectivity between FPN and regions outside DMN, including thalamus, lateral frontal cortex, and somatosensory/motor regions
- …