310 research outputs found

    Accurate Prediction of Protein Structural Class

    Get PDF
    Because of the increasing gap between the data from sequencing and structural genomics, the accurate prediction of the structural class of a protein domain solely from the primary sequence has remained a challenging problem in structural biology. Traditional sequence-based predictors generally select several sequence features and then feed them directly into a classification program to identify the structural class. The current best sequence-based predictor achieved an overall accuracy of 74.1% when tested on a widely used, non-homologous benchmark dataset 25PDB. In the present work, we built a multiple linear regression (MLR) model to convert the 440-dimensional (440D) sequence feature vector extracted from the Position Specific Scoring Matrix (PSSM) of a protein domain to a 4-dimensinal (4D) structural feature vector, which could then be used to predict the four major structural classes. We performed 10-fold cross-validation and jackknife tests of the method on a large non-homologous dataset containing 8,244 domains distributed among the four major classes. The performance of our approach outperformed all of the existing sequence-based methods and had an overall accuracy of 83.1%, which is even higher than the results of those predicted secondary structure-based methods

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity

    Get PDF
    Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy

    CD40 Is Essential in the Upregulation of TRAF Proteins and NF-KappaB-Dependent Proinflammatory Gene Expression after Arterial Injury

    Get PDF
    Despite extensive investigations, restenosis, which is characterized primarily by neointima formation, remains an unsolved clinical problem after vascular interventions. A recent study has shown that CD40 signaling through TNF receptor associated factor 6 (TRAF6) plays a key role in neointima formation after carotid artery injury; however, underlying mechanisms are not clearly elucidated. Because neointima formation may vary significantly depending on the type of injury, we first assessed the effect of CD40 deficiency on neointima formation in 2 injury models, carotid artery ligation and femoral artery denudation injury. Compared with wild-type mice, CD40 deficiency significantly reduced neointima formation and lumen stenosis in two different models. Further, we investigated the mechanism by which CD40 signaling affects neointima formation after arterial injury. In wild-type mice, the expression levels of CD40, several TRAF proteins, including TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, as well as total NF-kB p65 and phospho-NF-kB p65, in the carotid artery were markedly upregulated within 3–7 days after carotid ligation. Deficiency of CD40 abolished the injury-induced upregulation of TRAFs including TRAF6 and NF-kB-p65 in the injured vessel wall. Further, CD40βˆ’/βˆ’ mice showed a significant decrease in the recruitment of neutrophils (at 3, 7d) and macrophages (at 7, 21d) into injured artery; this effect was most likely attributed to inhibition of NF-kB activation and marked downregulation of NF-kB-related gene expression, including cytokines (TNFΞ±, IL-1Ξ², IL-6), chemokines (MCP-1), and adhesion molecules (ICAM-1, VCAM-1). Moreover, neutrophil recruitment in a model of thioglycollate-induced peritonitis is impaired in CD40-deficient mice. In vitro data revealed that CD40 deficiency blocked CD40L-induced NF-kB p65 nuclear translocation in leukocytes. Altogether, our data identified for the first time that CD40 is essential in the upregulation of TRAF6, NF-kB activation, and NF-kB-dependent proinflammatory genes in vivo. Our findings firmly established the role for CD40 in neointima formation in 2 distinct injury models

    RAGE Mediates Accelerated Diabetic Vein Graft Atherosclerosis Induced by Combined Mechanical Stress and AGEs via Synergistic ERK Activation

    Get PDF
    Aims/Hypothesis: Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor. Methods: In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signalregulated kinase (ERK) phosphorylation and Ki-67 expression were investigated. Results: Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE. Conclusion: RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanica

    From design to implementation - The Joint Asia Diabetes Evaluation (JADE) program: A descriptive report of an electronic web-based diabetes management program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Joint Asia Diabetes Evaluation (JADE) Program is a web-based program incorporating a comprehensive risk engine, care protocols, and clinical decision support to improve ambulatory diabetes care.</p> <p>Methods</p> <p>The JADE Program uses information technology to facilitate healthcare professionals to create a diabetes registry and to deliver an evidence-based care and education protocol tailored to patients' risk profiles. With written informed consent from participating patients and care providers, all data are anonymized and stored in a databank to establish an Asian Diabetes Database for research and publication purpose.</p> <p>Results</p> <p>The JADE electronic portal (e-portal: <url>http://www.jade-adf.org</url>) is implemented as a Java application using the Apache web server, the mySQL database and the Cocoon framework. The JADE e-portal comprises a risk engine which predicts 5-year probability of major clinical events based on parameters collected during an annual comprehensive assessment. Based on this risk stratification, the JADE e-portal recommends a care protocol tailored to these risk levels with decision support triggered by various risk factors. Apart from establishing a registry for quality assurance and data tracking, the JADE e-portal also displays trends of risk factor control at each visit to promote doctor-patient dialogues and to empower both parties to make informed decisions.</p> <p>Conclusions</p> <p>The JADE Program is a prototype using information technology to facilitate implementation of a comprehensive care model, as recommended by the International Diabetes Federation. It also enables health care teams to record, manage, track and analyze the clinical course and outcomes of people with diabetes.</p

    Claudin-7 Is Frequently Overexpressed in Ovarian Cancer and Promotes Invasion

    Get PDF
    Background: Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC. Methodology/Principal Findings: A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration

    Genetic Control of Susceptibility to Infection with Candida albicans in Mice

    Get PDF
    Candida albicans is an opportunistic pathogen that causes acute disseminated infections in immunocompromised hosts, representing an important cause of morbidity and mortality in these patients. To study the genetic control of susceptibility to disseminated C. albicans in mice, we phenotyped a group of 23 phylogenetically distant inbred strains for susceptibility to infection as measured by extent of fungal replication in the kidney 48 hours following infection. Susceptibility was strongly associated with the loss-of-function mutant complement component 5 (C5/Hc) allele, which is known to be inherited by approximately 40% of inbred strains. Our survey identified 2 discordant strains, AKR/J (C5-deficient, resistant) and SM/J (C5-sufficient, susceptible), suggesting that additional genetic effects may control response to systemic candidiasis in these strains. Haplotype association mapping in the 23 strains using high density SNP maps revealed several putative loci regulating the extent of C. albicans replication, amongst which the most significant were C5 (P valueβ€Š=β€Š2.43Γ—10βˆ’11) and a novel effect on distal chromosome 11 (P valueβ€Š=β€Š7.63Γ—10βˆ’9). Compared to other C5-deficient strains, infected AKR/J strain displays a reduced fungal burden in the brain, heart and kidney, and increased survival, concomitant with uniquely high levels of serum IFNΞ³. C5-independent genetic effects were further investigated by linkage analysis in an [A/JxAKR/J]F2 cross (nβ€Š=β€Š158) where the mutant Hc allele is fixed. These studies identified a chromosome 11 locus (Carg4, Candida albicans resistance gene 4; LODβ€Š=β€Š4.59), and a chromosome 8 locus (Carg3; LODβ€Š=β€Š3.95), both initially detected by haplotype association mapping. Alleles at both loci were inherited in a co-dominant manner. Our results verify the important effect of C5-deficiency in inbred mouse strains, and further identify two novel loci, Carg3 and Carg4, which regulate resistance to C. albicans infection in a C5-independent manner

    Caveolin-1 Plays a Crucial Role in Inhibiting Neuronal Differentiation of Neural Stem/Progenitor Cells via VEGF Signaling-Dependent Pathway

    Get PDF
    In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs
    • …
    corecore