270 research outputs found

    Prediction of thyroid C-cell carcinogenicity after chronic administration of GLP1-R agonists in rodents Toxicology and Applied Pharmacology

    Get PDF
    Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2 years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes

    Long-term culture of genome-stable bipotent stem cells from adult human liver.

    Get PDF
    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy.This work was supported by grants to MH (EU/236954) and to HC (The United European Gastroenterology Federation (UEGF) Research Prize 2010, EU/232814-StemCellMark and NWO/116002008). MH is supported by The Wellcome Trust Sir Henry Dale fellowship. The Rspo cell line was kindly provided by Dr. Calvin Kuo.This is the final published version. It first appeared at http://www.cell.com/abstract/S0092-8674%2814%2901566-9

    Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling of Hepatic Steatosis.

    Get PDF
    Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases. To examine the possibility of using organoids to model steatosis, we established a long-term feline liver organoid culture with adult liver stem cell characteristics and differentiation potential toward hepatocyte-like cells. Next, organoids from mouse, human, dog, and cat liver were provided with fatty acids. Lipid accumulation was observed in all organoids and interestingly, feline liver organoids accumulated more lipid droplets than human organoids. Finally, we demonstrate effects of interference with β-oxidation on lipid accumulation in feline liver organoids. In conclusion, feline liver organoids can be successfully cultured and display a predisposition for lipid accumulation, making them an interesting model in hepatic steatosis research

    Modelling metastatic colonization of cholangiocarcinoma organoids in decellularized lung and lymph nodes

    Get PDF
    Cholangiocarcinoma (CCA) is a type of liver cancer with an aggressive phenotype and dismal outcome in patients. The metastasis of CCA cancer cells to distant organs, commonly lung and lymph nodes, drastically reduces overall survival. However, mechanistic insight how CCA invades these metastatic sites is still lacking. This is partly because currently available models fail to mimic the complexity of tissue-specific environments for metastatic CCA. To create an in vitro model in which interactions between epithelial tumor cells and their surrounding extracellular matrix (ECM) can be studied in a metastatic setting, we combined patient-derived CCA organoids (CCAOs) (n=3) with decellularized human lung (n=3) and decellularized human lymph node (n=13). Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin. Proteomic analyses showed a tissue-specific ECM protein signature reflecting tissue functioning aspects. The macro and micro-scale mechanical properties, as determined by rheology and micro-indentation, revealed the local heterogeneity of the ECM. When growing CCAOs in decellularized lung and lymph nodes genes related to metastatic processes, including epithelial-to-mesenchymal transition and cancer stem cell plasticity, were significantly influenced by the ECM in an organ-specific manner. Furthermore, CCAOs exhibit significant differences in migration and proliferation dynamics dependent on the original patient tumor and donor of the target organ. In conclusion, CCA metastatic outgrowth is dictated both by the tumor itself as well as by the ECM of the target organ. Convergence of CCAOs with the ECM of its metastatic organs provide a new platform for mechanistic study of cancer metastasis

    Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis.

    Get PDF
    Funder: Giersch FoundationBACKGROUND: Organoids are morphologically heterogeneous three-dimensional cell culture systems and serve as an ideal model for understanding the principles of collective cell behaviour in mammalian organs during development, homeostasis, regeneration, and pathogenesis. To investigate the underlying cell organisation principles of organoids, we imaged hundreds of pancreas and cholangiocarcinoma organoids in parallel using light sheet and bright-field microscopy for up to 7 days. RESULTS: We quantified organoid behaviour at single-cell (microscale), individual-organoid (mesoscale), and entire-culture (macroscale) levels. At single-cell resolution, we monitored formation, monolayer polarisation, and degeneration and identified diverse behaviours, including lumen expansion and decline (size oscillation), migration, rotation, and multi-organoid fusion. Detailed individual organoid quantifications lead to a mechanical 3D agent-based model. A derived scaling law and simulations support the hypotheses that size oscillations depend on organoid properties and cell division dynamics, which is confirmed by bright-field microscopy analysis of entire cultures. CONCLUSION: Our multiscale analysis provides a systematic picture of the diversity of cell organisation in organoids by identifying and quantifying the core regulatory principles of organoid morphogenesis

    Individual risk calculator to predict lymph node metastases in patients with submucosal (T1b) esophageal adenocarcinoma:a multicenter cohort study

    Get PDF
    Background Lymph node metastasis (LNM) is possible after endoscopic resection of early esophageal adenocarcinoma (EAC). This study aimed to develop and internally validate a prediction model that estimates the individual risk of metastases in patients with pT1b EAC. Methods A nationwide, retrospective, multicenter cohort study was conducted in patients with pT1b EAC treated with endoscopic resection and/or surgery between 1989 and 2016. The primary end point was presence of LNM in surgical resection specimens or detection of metastases during follow-up. All resection specimens were histologically reassessed by specialist gastrointestinal pathologists. Subdistribution hazard regression analysis was used to develop the prediction model. The discriminative ability of this model was assessed using the c-statistic. Results 248 patients with pT1b EAC were included. Metastases were seen in 78 patients, and the 5-year cumulative incidence was 30.9 % (95 % confidence interval [CI] 25.1 %-36.8 %). The risk of metastases increased with submucosal invasion depth (subdistribution hazard ratio [SHR] 1.08, 95 %CI 1.02-1.14, for every increase of 500 ÎĽm), lymphovascular invasion (SHR 2.95, 95 %CI 1.95-4.45), and for larger tumors (SHR 1.23, 95 %CI 1.10-1.37, for every increase of 10 mm). The model demonstrated good discriminative ability (c-statistic 0.81, 95 %CI 0.75-0.86). Conclusions A third of patients with pT1b EAC experienced metastases within 5 years. The probability of developing post-resection metastases was estimated with a personalized predicted risk score incorporating tumor invasion depth, tumor size, and lymphovascular invasion. This model requires external validation before implementation into clinical practice

    Liver injury and fibrosis induced by dietary challenge in the ossabaw miniature Swine

    Get PDF
    BACKGROUND: Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. METHODS: Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. RESULTS: The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. CONCLUSIONS: This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides

    Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett's esophagus and esophageal adenocarcinoma

    Get PDF
    Background: The continuous exposure of esophageal epithelium to refluxate may induce ectopic expression of bile-responsive genes and contribute to the development of Barrett's esophagus (BE) and esophageal adenocarcinoma. In normal physiology of the gut and liver, the nuclear receptor Pregnane Ă— Receptor (PXR) is an important factor in the detoxification of xenobiotics and bile acid homeostasis. This study aimed to investigate the expression and genetic variation of PXR in reflux esophagitis (RE), Barrett's esophagus (BE) and esophageal adenocarcinoma.Methods: PXR mRNA levels and protein expression were determined in biopsies from patients with adenocarcinoma, BE, or RE, and healthy controls. Esophageal cell lines were stimulated with lithocholic acid and rifampicin. PXR polymorphisms 25385C/T, 7635A/G, and 8055C/T were genotyped in 249 BE patients, 233 RE patients, and 201 controls matched for age and gender.Results: PXR mRNA levels were significantly higher in adenocarcinoma tissue and columnar Barrett's epithelium, compared to squamous epithelium of these BE patients (P < 0.001), and RE patients (P = 0.003). Immunohistochemical staining of PXR showed predominantly cytoplasmic expression in BE tissue, whereas nuclear expression was found in adenocarcinoma tissue. In cell lines, stimulation with lithocholic acid did not increase PXR mRNA levels, but did induce nuclear translocation of PXR protein. Genotyping of the PXR 7635A/G polymorphism revealed that the G allele was significantly more prevalent in BE than in RE or controls (P = 0.037).Conclusions: PXR expresses in BE and adenocarcinoma tissue, and showed nuclear localization in adenocarcinoma tissue. Upon stimulation with lithocholic acid, PXR translocates to the nuclei of OE19 adenocarcinoma cells. Together with the observed association of a PXR polymorphism and BE, this data implies that PXR may have a function in prediction and treatment of esophageal disease

    Associations of Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Gene With Subsequent Coronary Heart Disease: An Individual-Level Meta-Analysis

    Get PDF
    Background: The knowledge of factors influencing disease progression in patients with established coronary heart disease (CHD) is still relatively limited. One potential pathway is related to peroxisome proliferator–activated receptor gamma coactivator-1 alpha (PPARGC1A), a transcription factor linked to energy metabolism which may play a role in the heart function. Thus, its associations with subsequent CHD events remain unclear. We aimed to investigate the effect of three different SNPs in the PPARGC1A gene on the risk of subsequent CHD in a population with established CHD. Methods: We employed an individual-level meta-analysis using 23 studies from the GENetIcs of sUbSequent Coronary Heart Disease (GENIUS-CHD) consortium, which included participants (n = 80,900) with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. Three variants in the PPARGC1A gene (rs8192678, G482S; rs7672915, intron 2; and rs3755863, T528T) were tested for their associations with subsequent events during the follow-up using a Cox proportional hazards model adjusted for age and sex. The primary outcome was subsequent CHD death or myocardial infarction (CHD death/myocardial infarction). Stratified analyses of the participant or study characteristics as well as additional analyses for secondary outcomes of specific cardiovascular disease diagnoses and all-cause death were also performed. Results: Meta-analysis revealed no significant association between any of the three variants in the PPARGC1A gene and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline: rs8192678, hazard ratio (HR): 1.01, 95% confidence interval (CI) 0.98–1.05 and rs7672915, HR: 0.97, 95% CI 0.94–1.00; rs3755863, HR: 1.02, 95% CI 0.99–1.06. Similarly, no significant associations were observed for any of the secondary outcomes. The results from stratified analyses showed null results, except for significant inverse associations between rs7672915 (intron 2) and the primary outcome among 1) individuals aged ≥65, 2) individuals with renal impairment, and 3) antiplatelet users. Conclusion: We found no clear associations between polymorphisms in the PPARGC1A gene and subsequent CHD events in patients with established CHD at baseline
    • …
    corecore