523 research outputs found

    Matrix models and sensitivity analysis of populations classified by age and stage : a vec-permutation matrix approach

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Theoretical Ecology 5 (2012): 403-417, doi:10.1007/s12080-011-0132-2.Matrix population models in which individuals are classified by both age and stage can be constructed using the vec-permutation matrix. The resulting age-stage models can be used to derive the age-specific consequences of a stage-specific life history or to describe populations in which the vital rates respond to both age and stage. I derive a general formula for the sensitivity of any output (scalar, vector, or matrix-valued) of the model, to any vector of parameters, using matrix calculus. The matrices describing age-stage dynamics are almost always reducible; I present results giving conditions under which population growth is ergodic from any initial condition. As an example, I analyze a published stage-specific model of Scotch broom (Cytisus scoparius), an invasive perennial shrub. Sensitivity analysis of the population growth rate finds that the selection gradients on adult survival do not always decrease with age but may increase over a range of ages. This may have implications for the evolution of senescence in stage-classified populations. I also derive and analyze the joint distribution of age and stage at death and present a sensitivity analysis of this distribution and of the marginal distribution of age at death.This research was supported by National Science Foundation Grant DEB-0816514 and by a Research Award from the Alexander von Humboldt Foundation

    Does Al4H14— cluster anion exist? High-level ab initio study

    Get PDF
    A comprehensive ab initio investigation using coupled cluster theory with the aug-cc-pVnZ, n = D,T basis sets is carried out to identify distinct structures of the Al4H14— cluster anion and to evaluate its fragmentation stability. Both thermodynamic and mechanistic aspects of the fragmentation reactions are studied. The observation of this so far the most hydrogenated aluminum tetramer was reported in the recent mass spectrometry study of Li et al. (2010) J Chem Phys 132:241103–241104. The four Al4H14— anion structures found are chain-like with the multiple-coordinate Al center and can be viewed approximately as comprising Al2H7— and Al2H7 moieties. Locating computationally some of the Al4H14— minima on the correlated ab initio potential energy surfaces required the triple-zeta quality basis set to describe adequately the Al multi-coordinate bonding. For the two most stable Al4H14— isomers, the mechanism of their low-barrier interconversion is described. The dissociation of Al4H14— into the Al2H7— and Al2H7 units is predicted to require 20-22 (10-13) kcal mol-1 in terms of ΔH (ΔG) estimated at T = 298.15 K and p = 1 atm. However, Al4H14— is found to be a metastable species in the gas phase: the H2 loss from the radical moiety of its most favorable isomer is exothermic by 18 kcal mol-1 in terms of ΔH (298.15 K) and by 25 kcal mol-1 in terms of ΔG(298.15 K), with the enthalpic/free energy barrier involved being less than 1 kcal mol-1. By contrast with alane Al4H14—, only a weakly bound complex between Ga4H12— and H2 has been identified for the gallium analogue using the relativistic effective core potential

    Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding what constitutes an important difference on a HRQL measure is critical to its interpretation. The aim of this study was to provide a range of estimates of minimally important differences (MIDs) in EQ-5D scores in cancer and to determine if estimates are comparable in lung cancer.</p> <p>Methods</p> <p>A retrospective analysis was conducted on cross-sectional data collected from 534 cancer patients, 50 of whom were lung cancer patients. A range of minimally important differences (MIDs) in EQ-5D index-based utility (UK and US) scores and VAS scores were estimated using both anchor-based and distribution-based (1/2 standard deviation and standard error of the measure) approaches. Groups were anchored using Eastern Cooperative Oncology Group performance status (PS) ratings and FACT-G total score-based quintiles.</p> <p>Results</p> <p>For UK-utility scores, MID estimates based on PS ranged from 0.10 to 0.12 both for all cancers and for lung cancer subgroup. Using FACT-G quintiles, MIDs were 0.09 to 0.10 for all cancers, and 0.07 to 0.08 for lung cancer. For US-utility scores, MIDs ranged from 0.07 to 0.09 grouped by PS for all cancers and for lung cancer; when based on FACT-G quintiles, MIDs were 0.06 to 0.07 in all cancers and 0.05 to 0.06 in lung cancer. MIDs for VAS scores were similar for lung and all cancers, ranging from 8 to 12 (PS) and 7 to 10 (FACT-G quintiles).</p> <p>Discussion</p> <p>Important differences in EQ-5D utility and VAS scores were similar for all cancers and lung cancer, with the lower end of the range of estimates closer to the MID, i.e. 0.08 for UK-index scores, 0.06 for US-index scores, and 0.07 for VAS scores.</p

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    Accelerated stem cell labeling with ferucarbotran and protamine

    Get PDF
    To develop and characterize a clinically applicable, fast and efficient method for stem cell labeling with ferucarbotran and protamine for depiction with clinical MRI. The hydrodynamic diameter, zeta potential and relaxivities of ferucarbotran and varying concentrations of protamine were measured. Once the optimized ratio was found, human mesenchymal stem cells (MSCs) were labeled at varying incubation times (1–24 h). Viability was assessed via Trypan blue exclusion testing. 150,000 labeled cells in Ficoll solution were imaged with T1-, T2- and T2*-weighted sequences at 3 T, and relaxation rates were calculated. Varying the concentrations of protamine allows for easy modification of the physicochemical properties. Simple incubation with ferucarbotran alone resulted in efficient labeling after 24 h of incubation while assisted labeling with protamine resulted in similar results after only 1 h. Cell viability remained unaffected. R2 and R2* relaxation rates were drastically increased. Electron microscopy confirmed intracellular iron oxide uptake in lysosomes. Relaxation times correlated with results from ICP-AES. Our results show internalization of ferucarbotran can be accelerated in MSCs with protamine, an approved heparin antagonist and potentially clinically applicable uptake-enhancing agent

    Long-term outcomes of early childhood science education: insight from a cross-national comparative case study on conceptual understanding of science

    Get PDF
    The purpose of this research was to explore the long term outcomes of either participating or not participating in early childhood science education on Grade 6 students’ conceptual understanding of science. The research is situated in a conceptual framework that evokes Piagetian developmental levels as both potential curriculum constraints and potential models of efficacy. The research design was a multiple case study of Grade 6 children from three schools in China (n=140) who started formal science education in the third grade, and Grade 6 children from three matched schools in Australia (n=105) who started learning science in kindergarten. The students’ understanding was assessed by a science quiz and in-depth interview. The data showed that participating children from the high socio-economic schools in China and Australia had similar understandings of science. Divergence between the medium and low socio-economic schools, however, indicated that the grounding in early childhood science education in Australia may have placed these children at an advantage. Alternative explanations for the divergence including the nature of classroom instruction in the two countries are discussed

    The Genetic Interpretation of Area under the ROC Curve in Genomic Profiling

    Get PDF
    Genome-wide association studies in human populations have facilitated the creation of genomic profiles which combine the effects of many associated genetic variants to predict risk of disease. The area under the receiver operator characteristic (ROC) curve is a well established measure for determining the efficacy of tests in correctly classifying diseased and non-diseased individuals. We use quantitative genetics theory to provide insight into the genetic interpretation of the area under the ROC curve (AUC) when the test classifier is a predictor of genetic risk. Even when the proportion of genetic variance explained by the test is 100%, there is a maximum value for AUC that depends on the genetic epidemiology of the disease, i.e. either the sibling recurrence risk or heritability and disease prevalence. We derive an equation relating maximum AUC to heritability and disease prevalence. The expression can be reversed to calculate the proportion of genetic variance explained given AUC, disease prevalence, and heritability. We use published estimates of disease prevalence and sibling recurrence risk for 17 complex genetic diseases to calculate the proportion of genetic variance that a test must explain to achieve AUC = 0.75; this varied from 0.10 to 0.74. We provide a genetic interpretation of AUC for use with predictors of genetic risk based on genomic profiles. We provide a strategy to estimate proportion of genetic variance explained on the liability scale from estimates of AUC, disease prevalence, and heritability (or sibling recurrence risk) available as an online calculator
    corecore