101 research outputs found

    Semidiurnal temperature changes caused by tidal front movements in the warm season in seabed habitats on the Georges Bank northern margin and their ecological implications

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain. The definitive version was published in PLoS ONE 8 (2013): e55273, doi:10.1371/journal.pone.0055273.Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ~100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.This study was supported by salary funds from the regular annual salary budget from Northeast Fisheries Science Center (NEFSC) and United States Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH C&MSC), respectively; ship time funds from the NEFSC annual budget for days-at-sea ship operations; equipment from the NEFSC and USGS WH C&MSC annual equipment budgets

    Silver hake tracks changes in Northwest Atlantic circulation

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Communications 2 (2011): 412, doi:10.1038/ncomms1420.Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream (GS). These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the GS path, namely changes in the Atlantic Meridional Overturning Circulation (AMOC). If AMOC weakens as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.J.A.N. was supported by the NOAA Fisheries and the Environment program (FATE). T.M.J. and Y.O.K. were supported by the WHOI Ocean Climate Change Institute and Ocean Life Institute

    Indications for implant removal after fracture healing: a review of the literature

    Get PDF
    Introduction: The aim of this review was to collect and summarize published data on the indications for implant removal after fracture healing, since these are not well defined and guidelines hardly exist. Methods: A literature search was performed. Results: Though there are several presumed benefits of implant removal, such as functional improvement and pain relief, the surgical procedure can be very challenging and may lead to complications or even worsening of the complaints. Research has focused on the safety of metal implants (e.g., risk of corrosion, allergy, and carcinogenesis). For these reasons, implants have been removed routinely for decades. Along with the introduction of titanium alloy implants, the need for implant removal became a subject of debate in view of potential (dis)advantages since, in general, implants made of titanium alloys are more difficult to remove. Currently, the main indications for removal from both the upper and lower extremity are mostly 'relative' and patient-driven, such as pain, prominent material, or simply the request for removal. True medical indications like infection or intra-articular material are minor reasons. Conclusion: This review illustrates the great variety of view points in the literature, with large differences in opinions and practices about the indications for implant removal after fracture healing. Since some studies have described asymptomatic patients developing complaints after removal, the general advice nowadays is to remove implants after fracture healing only in symptomatic patients and after a proper informed consent. Well-designed prospective studies on this subject are urgently needed in order to form guidelines based on scientific evidence

    Species-Area Relationships Are Controlled by Species Traits

    Get PDF
    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope  = 0.82), narrow dietary niche (slope  = 0.59), low abundance (slope  = 0.52), and low reproductive potential (slope  = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions

    Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    Get PDF
    Background: In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings: We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43uN, 63–71uW, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance: The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists

    Reversal of childhood idiopathic scoliosis in an adult, without surgery: a case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some patients with mild or moderate thoracic scoliosis (Cobb angle <50-60 degrees) suffer disproportionate impairment of pulmonary function associated with deformities in the sagittal plane and reduced flexibility of the spine and chest cage. Long-term improvement in the clinical signs and symptoms of childhood onset scoliosis in an adult, without surgical intervention, has not been documented previously.</p> <p>Case presentation</p> <p>A diagnosis of thoracic scoliosis (Cobb angle 45 degrees) with pectus excavatum and thoracic hypokyphosis in a female patient (DOB 9/17/52) was made in June 1964. Immediate spinal fusion was strongly recommended, but the patient elected a daily home exercise program taught during a 6-week period of training by a physical therapist. This regime was carried out through 1992, with daily aerobic exercise added in 1974. The Cobb angle of the primary thoracic curvature remained unchanged. Ongoing clinical symptoms included dyspnea at rest and recurrent respiratory infections. A period of multimodal treatment with clinical monitoring and treatment by an osteopathic physician was initiated when the patient was 40 years old. This included deep tissue massage (1992-1996); outpatient psychological therapy (1992-1993); a daily home exercise program focused on mobilization of the chest wall (1992-2005); and manipulative medicine (1994-1995, 1999-2000). Progressive improvement in chest wall excursion, increased thoracic kyphosis, and resolution of long-standing respiratory symptoms occurred concomitant with a >10 degree decrease in Cobb angle magnitude of the primary thoracic curvature.</p> <p>Conclusion</p> <p>This report documents improved chest wall function and resolution of respiratory symptoms in response to nonsurgical approaches in an adult female, diagnosed at age eleven years with idiopathic scoliosis.</p

    Planktonic Microbes in the Gulf of Maine Area

    Get PDF
    In the Gulf of Maine area (GoMA), as elsewhere in the ocean, the organisms of greatest numerical abundance are microbes. Viruses in GoMA are largely cyanophages and bacteriophages, including podoviruses which lack tails. There is also evidence of Mimivirus and Chlorovirus in the metagenome. Bacteria in GoMA comprise the dominant SAR11 phylotype cluster, and other abundant phylotypes such as SAR86-like cluster, SAR116-like cluster, Roseobacter, Rhodospirillaceae, Acidomicrobidae, Flavobacteriales, Cytophaga, and unclassified Alphaproteobacteria and Gammaproteobacteria clusters. Bacterial epibionts of the dinoflagellate Alexandrium fundyense include Rhodobacteraceae, Flavobacteriaceae, Cytophaga spp., Sulfitobacter spp., Sphingomonas spp., and unclassified Bacteroidetes. Phototrophic prokaryotes in GoMA include cyanobacteria that contain chlorophyll (mainly Synechococcus), aerobic anoxygenic phototrophs that contain bacteriochlorophyll, and bacteria that contain proteorhodopsin. Eukaryotic microalgae in GoMA include Bacillariophyceae, Dinophyceae, Prymnesiophyceae, Prasinophyceae, Trebouxiophyceae, Cryptophyceae, Dictyochophyceae, Chrysophyceae, Eustigmatophyceae, Pelagophyceae, Synurophyceae, and Xanthophyceae. There are no records of Bolidophyceae, Aurearenophyceae, Raphidophyceae, and Synchromophyceae in GoMA. In total, there are records for 665 names and 229 genera of microalgae. Heterotrophic eukaryotic protists in GoMA include Dinophyceae, Alveolata, Apicomplexa, amoeboid organisms, Labrynthulida, and heterotrophic marine stramenopiles (MAST). Ciliates include Strombidium, Lohmaniella, Tontonia, Strobilidium, Strombidinopsis and the mixotrophs Laboea strobila and Myrionecta rubrum (ex Mesodinium rubra). An inventory of selected microbial groups in each of 14 physiographic regions in GoMA is made by combining information on the depth-dependent variation of cell density and the depth-dependent variation of water volume. Across the entire GoMA, an estimate for the minimum abundance of cell-based microbes is 1.7×1025 organisms. By one account, this number of microbes implies a richness of 105 to 106 taxa in the entire water volume of GoMA. Morphological diversity in microplankton is well-described but the true extent of taxonomic diversity, especially in the femtoplankton, picoplankton and nanoplankton – whether autotrophic, heterotrophic, or mixotrophic, is unknown

    Italian guidelines for primary headaches: 2012 revised version

    Get PDF
    The first edition of the Italian diagnostic and therapeutic guidelines for primary headaches in adults was published in J Headache Pain 2(Suppl. 1):105–190 (2001). Ten years later, the guideline committee of the Italian Society for the Study of Headaches (SISC) decided it was time to update therapeutic guidelines. A literature search was carried out on Medline database, and all articles on primary headache treatments in English, German, French and Italian published from February 2001 to December 2011 were taken into account. Only randomized controlled trials (RCT) and meta-analyses were analysed for each drug. If RCT were lacking, open studies and case series were also examined. According to the previous edition, four levels of recommendation were defined on the basis of levels of evidence, scientific strength of evidence and clinical effectiveness. Recommendations for symptomatic and prophylactic treatment of migraine and cluster headache were therefore revised with respect to previous 2001 guidelines and a section was dedicated to non-pharmacological treatment. This article reports a summary of the revised version published in extenso in an Italian version

    Synthesis of Pleurospermine, the Leaf Alkaloid of Cryptocarya pleurosperma White and Francis

    No full text
    corecore