40 research outputs found

    The health outcomes and physical activity in preschoolers (HOPP) study: rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early years are the period of growth for which we know the least about the impact of physical activity. In contrast, we know that more than 90 % of school-aged Canadian children, for example, are not meeting physical activity recommendations. Such an activity crisis is a major contributor to recent trends in childhood obesity, to which preschoolers are not immune. The World Health Organization estimated that more than 42 million children under the age of 5 years were overweight world-wide in 2010. If an activity crisis exists during the preschool years, we should also be concerned about its broader impact on health. Unfortunately, the relationship between physical activity and health during the early years is poorly understood. The goal of the Health Outcomes and Physical activity in Preschoolers (HOPP) study is to describe how the prevalence and patterns of physical activity in preschoolers are associated with indices of health.</p> <p>Methods</p> <p>The HOPP study is a prospective cohort study. We aim to recruit 400 3- to 5-year-old children (equal number of boys and girls) and test them once per year for 3 years. Each annual assessment involves 2 laboratory visits and 7 consecutive days of physical activity monitoring with protocols developed in our pilot work. At visit 1, we assess body composition, aerobic fitness, short-term muscle power, motor skills, and have the parents complete a series of questionnaires related to their child’s physical activity, health-related quality of life and general behaviour. Over 7 consecutive days each child wears an accelerometer on his/her waist to objectively monitor physical activity. The accelerometer is programmed to record movement every 3 s, which is needed to accurately capture the intensity of physical activity. At visit 2, we assess vascular structure and function using ultrasound. To assess the associations between physical activity and health outcomes, our primary analysis will involve mixed-effects models for longitudinal analyses.</p> <p>Discussion</p> <p>The HOPP study addresses a significant gap in health research and our findings will hold the potential to shape public health policy for active living during the early years.</p

    Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment

    Get PDF
    BACKGROUND: Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. CONCLUSIONS/SIGNIFICANCE: This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance

    Adolescents' involvement in cyber bullying and perceptions of school: the importance of perceived peer acceptance for female adolescents

    Get PDF
    Young people are spending increasing amounts of time using digital technology and, as such, are at great risk of being involved in cyber bullying as a victim, bully, or bully/victim. Despite cyber bullying typically occurring outside the school environment, the impact of being involved in cyber bullying is likely to spill over to school. Fully 285 11- to 15-year-olds (125 male and 160 female, M age = 12.19 years, SD = 1.03) completed measures of cyber bullying involvement, self-esteem, trust, perceived peer acceptance, and perceptions of the value of learning and the importance of school. For young women, involvement in cyber bullying as a victim, bully, or bully/victim negatively predicted perceptions of learning and school, and perceived peer acceptance mediated this relationship. The results indicated that involvement in cyber bullying negatively predicted perceived peer acceptance which, in turn, positively predicted perceptions of learning and school. For young men, fulfilling the bully/victim role negatively predicted perceptions of learning and school. Consequently, for young women in particular, involvement in cyber bullying spills over to impact perceptions of learning. The findings of the current study highlight how stressors external to the school environment can adversely impact young women's perceptions of school and also have implications for the development of interventions designed to ameliorate the effects of cyber bullying

    Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species

    Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    Get PDF
    BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and bugey-3 experiments

    Get PDF
    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^2 2θμe are set over 6 orders of magnitude in the sterile mass-squared splitting Δm^2 41. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm^2 41 < 0.8 eV^2 at 95% CLs
    corecore