445 research outputs found

    Influence of Olfactory Epithelium on Mitral/Tufted Cell Dendritic Outgrowth

    Get PDF
    Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration

    I-TRAP: A method to identify transcriptional regulator activated promoters

    Get PDF
    BACKGROUND: The differential expression of virulence genes is often used by microbial pathogens in adapting to the environment of their host. The differential expression of such sets of genes can be regulated by RNA polymerase sigma factors. Some sigma factors are differentially expressed, which can provide a means to identifying other differentially expressed genes such as those whose expression are controlled by the sigma factor. METHODS: To identify sigma factor-regulated genes, we developed a method, termed I-TRAP, for the identification of transcriptional regulator activated promoters. The I-TRAP method is based on the fact that some genes will be differentially expressed in the presence and absence of a transcriptional regulator. I-TRAP uses a DNA library in a promoter-trap vector that contains two reporter genes, one to allow the selection of active promoters in the presence of the transcriptional regulator and a second to allow screening for promoter activity in the absence of the transcriptional regulator. RESULTS: To illustrate the development and use of the I-TRAP approach, the construction of the vectors, host strains, and library necessary to identify SigmaE-regulated genes of Mycobacterium tuberculosis is described. CONCLUSION: The I-TRAP method should be a versatile and useful method for identifying and characterizing promoter activity under a variety of conditions and in response to various regulatory proteins. In our study, we isolated 360 clones that may contain plasmids carrying SigmaE-regulated promoters genes of M. tuberculosis

    Amplification of asynchronous inhibition-mediated synchronization by feedback in recurrent networks

    Get PDF
    Synchronization of 30-80 Hz oscillatory activity of the principle neurons in the olfactory bulb (mitral cells) is believed to be important for odor discrimination. Previous theoretical studies of these fast rhythms in other brain areas have proposed that principle neuron synchrony can be mediated by short-latency, rapidly decaying inhibition. This phasic inhibition provides a narrow time window for the principle neurons to fire, thus promoting synchrony. However, in the olfactory bulb, the inhibitory granule cells produce long lasting, small amplitude, asynchronous and aperiodic inhibitory input and thus the narrow time window that is required to synchronize spiking does not exist. Instead, it has been suggested that correlated output of the granule cells could serve to synchronize uncoupled mitral cells through a mechanism called "stochastic synchronization", wherein the synchronization arises through correlation of inputs to two neural oscillators. Almost all work on synchrony due to correlations presumes that the correlation is imposed and fixed. Building on theory and experiments that we and others have developed, we show that increased synchrony in the mitral cells could produce an increase in granule cell activity for those granule cells that share a synchronous group of mitral cells. Common granule cell input increases the input correlation to the mitral cells and hence their synchrony by providing a positive feedback loop in correlation. Thus we demonstrate the emergence and temporal evolution of input correlation in recurrent networks with feedback. We explore several theoretical models of this idea, ranging from spiking models to an analytically tractable model. © 2010 Marella, Ermentrout

    Clinical factors associated with fatigue over time in paediatric oncology patients receiving chemotherapy

    Get PDF
    The purpose of this study was to investigate the relationships between clinical factors (including haemoglobin value, chemotherapeutic agents, and corticosteroid use) and changing patterns of fatigue before and for the next 10 days following the start of a new round of chemotherapy in children with cancer. A prospective longitudinal design was used to collect data from 48 paediatric oncology patients who were about to begin a new round of chemotherapy and their parents. Fatigue levels were assessed using multidomain questionnaires with three categories of patient self-report (including ‘General Fatigue', ‘Sleep/Rest Fatigue', and ‘Cognitive Fatigue') and four categories of parent proxy-report (including ‘Lack of Energy', ‘Unable to Function', ‘Altered Sleep', and ‘Altered Mood'). The findings suggest that fatigue from both patient self-report and parent proxy-report changed significantly over time. The major findings from this study are that patients have more problems with fatigue in the first few days after the start of a cycle of chemotherapy. Corticosteroid use and haemoglobin value were associated with significant increases in fatigue that were sustained for several days and reached the highest level of fatigue at day 5 for those receiving concurrent steroids. The association of chemotherapeutic agents with fatigue varied between patient self-report and parent report, but the type of chemotherapeutic agents used was not associated with most changes in fatigue

    Consensus review of best practice of transanal irrigation in adults

    Get PDF
    Study design: Review article. Objectives: To provide a consensus expert review of the treatment modality for transanal irrigation (TAI). Methods: A consensus group of specialists from a range of nations and disciplines who have experience in prescribing and monitoring patients using TAI worked together assimilating both the emerging literature and rapidly accruing clinical expertise. Consensus was reached by a round table discussion process, with individual members leading the article write-up in the sections where they had particular expertise. Results: Detailed trouble-shooting tips and an algorithm of care to assist professionals with patient selection, management and follow-up was developed. Conclusion: This expert review provides a practical adjunct to training for the emerging therapeutic area of TAI. Careful patient selection, directly supervised training and sustained follow-up are key to optimise outcomes with the technique. Adopting a tailored, stepped approach to care is important in the heterogeneous patient groups to whom TAI may be applied. Sponsorship: The review was financially supported by Coloplast A/S. Spinal Cord (2013) 51, 732–738; doi:10.1038/sc.2013.86; published online 20 August 201

    Comparative physiology of Australian quolls (Dasyurus; Marsupialia)

    Get PDF
    Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T ^sub b^ of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C^sup -1^) and tiger quolls (0.051°C ºC^sup -1^) to substantial in northern quolls (0.100°C ºC^sup -1^) and chuditch (0.146°C ºC^sup -1^), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O^sub 2^ g^sup -1^ h^sup -1^), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H^sub 2^O g^sup -1^ h^sup -1^) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (-1.3°C), eastern (-12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls

    Beyond knowing nature: Contact, emotion, compassion, meaning, and beauty are pathways to nature connection

    Get PDF
    Feeling connected to nature has been shown to be beneficial to wellbeing and pro-environmental behaviour. General nature contact and knowledge based activities are often used in an attempt to engage people with nature. However the specific routes to nature connectedness have not been examined systematically. Two online surveys (total n = 321) of engagement with, and value of, nature activities structured around the nine values of the Biophila Hypothesis were conducted. Contact, emotion, meaning, and compassion, with the latter mediated by engagement with natural beauty, were predictors of connection with nature, yet knowledge based activities were not. In a third study (n = 72), a walking intervention with activities operationalising the identified predictors, was found to significantly increase connection to nature when compared to walking in nature alone or walking in and engaging with the built environment. The findings indicate that contact, emotion, meaning, compassion, and beauty are pathways for improving nature connectedness. The pathways also provide alternative values and frames to the traditional knowledge and identification routes often used by organisations when engaging the public with nature.N/

    Expression of SPIG1 Reveals Development of a Retinal Ganglion Cell Subtype Projecting to the Medial Terminal Nucleus in the Mouse

    Get PDF
    Visual information is transmitted to the brain by roughly a dozen distinct types of retinal ganglion cells (RGCs) defined by a characteristic morphology, physiology, and central projections. However, our understanding about how these parallel pathways develop is still in its infancy, because few molecular markers corresponding to individual RGC types are available. Previously, we reported a secretory protein, SPIG1 (clone name; D/Bsp120I #1), preferentially expressed in the dorsal region in the developing chick retina. Here, we generated knock-in mice to visualize SPIG1-expressing cells with green fluorescent protein. We found that the mouse retina is subdivided into two distinct domains for SPIG1 expression and SPIG1 effectively marks a unique subtype of the retinal ganglion cells during the neonatal period. SPIG1-positive RGCs in the dorsotemporal domain project to the dorsal lateral geniculate nucleus (dLGN), superior colliculus, and accessory optic system (AOS). In contrast, in the remaining region, here named the pan-ventronasal domain, SPIG1-positive cells form a regular mosaic and project exclusively to the medial terminal nucleus (MTN) of the AOS that mediates the optokinetic nystagmus as early as P1. Their dendrites costratify with ON cholinergic amacrine strata in the inner plexiform layer as early as P3. These findings suggest that these SPIG1-positive cells are the ON direction selective ganglion cells (DSGCs). Moreover, the MTN-projecting cells in the pan-ventronasal domain are apparently composed of two distinct but interdependent regular mosaics depending on the presence or absence of SPIG1, indicating that they comprise two functionally distinct subtypes of the ON DSGCs. The formation of the regular mosaic appears to be commenced at the end of the prenatal stage and completed through the peak period of the cell death at P6. SPIG1 will thus serve as a useful molecular marker for future studies on the development and function of ON DSGCs
    corecore