28 research outputs found

    Inter-rater reliability of categorical versus continuous scoring of fish vitality: does it affect the utility of the reflex action mortality predictor (RAMP) approach?

    Get PDF
    Scoring reflex responsiveness and injury of aquatic organisms has gained popularity as predictors of discard survival. Given this method relies upon the individual interpretation of scoring criteria, an evaluation of its robustness is done here to test whether protocol-instructed, multiple raters with diverse backgrounds (research scientist, technician, and student) are able to produce similar or the same reflex and injury score for one of the same flatfish (European plaice, Pleuronectes platessa) after experiencing commercial fishing stressors. Inter-rater reliability for three raters was assessed by using a 3-point categorical scale (‘absent’, ‘weak’, ‘strong’) and a tagged visual analogue continuous scale (tVAS, a 10 cm bar split in three labelled sections: 0 for ‘absent’, ‘weak’, ‘moderate’, and ‘strong’) for six reflex responses, and a 4-point scale for four injury types. Plaice (n = 304) were sampled from 17 research beam-trawl deployments during four trips. Fleiss kappa (categorical scores) and intra-class correlation coefficients (ICC, continuous scores) indicated variable inter-rater agreement by reflex type (ranging between 0.55 and 0.88, and 67% and 91% for Fleiss kappa and ICC, respectively), with least agreement among raters on extent of injury (Fleiss kappa between 0.08 and 0.27). Despite differences among raters, which did not significantly influence the relationship between impairment and predicted survival, combining categorical reflex and injury scores always produced a close relationship of such vitality indices and observed delayed mortality. The use of the continuous scale did not improve fit of these models compared with using the reflex impairment index based on categorical scores. Given these findings, we recommend using a 3-point categorical over a continuous scale. We also determined that training rather than experience of raters minimised inter-rater differences. Our results suggest that cost-efficient reflex impairment and injury scoring may be considered a robust technique to evaluate lethal stress and damage of this flatfish species on-board commercial beam-trawl vessels

    Modelling the impact of toxic and disturbance stress on white-tailed eagle (Haliaeetus albicilla) populations

    Get PDF
    Several studies have related breeding success and survival of sea eagles to toxic or non-toxic stress separately. In the present investigation, we analysed single and combined impacts of both toxic and disturbance stress on populations of white-tailed eagle (Haliaeetus albicilla), using an analytical single-species model. Chemical and eco(toxico)logical data reported from laboratory and field studies were used to parameterise and validate the model. The model was applied to assess the impact of ∑PCB, DDE and disturbance stress on the white-tailed eagle population in The Netherlands. Disturbance stress was incorporated through a 1.6% reduction in survival and a 10–50% reduction in reproduction. ∑PCB contamination from 1950 up to 1987 was found to be too high to allow the return of white-tailed eagle as a breeding species in that period. ∑PCB and population trends simulated for 2006–2050 suggest that future population growth is still reduced. Disturbance stress resulted in a reduced population development. The combination of both toxic and disturbance stress varied from a slower population development to a catastrophical reduction in population size, where the main cause was attributed to the reduction in reproduction of 50%. Application of the model was restricted by the current lack of quantitative dose–response relationships between non-toxic stress and survival and reproduction. Nevertheless, the model provides a first step towards integrating and quantifying the impacts of multiple stressors on white-tailed eagle populations

    Knowing about value; management learning as knowledge management

    No full text

    Knowing about value; management learning as knowledge management

    No full text

    Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media

    Get PDF
    We investigated the transport and retention kinetics of silica encapsulated – silica core double stranded DNA particles (SiDNASi) through 15cm saturated quartz sand columns as a function of a wide range of colloid injection concentrations (C0 = 8.7×102 - 6.6×108 particles ml-1). The breakthrough curves (BTCs) exhibited an overall 2-log increase of maximum relative effluent concentration with increasing C0. Inverse curve fitting, using HYDRUS1D, demonstrated that a 1-site first order kinetic attachment (katt) and detachment (kdet) model sufficed to explain the C0-dependent SiDNASi retention behaviour. With increasing C0, katt log-linearly decreased, which could be expressed as an overall decrease in the single-collector removal efficiency (ƞ). The decrease in ƞ was likely due to increased electrostatic repulsion between aqueous phase- solid phase colloids, formation of shadow zones downstream of deposited colloids and removal of weakly attached colloids from the solid phase (quartz sand) attributing to increased aqueous phase-solid phase intercolloidal collisions as a function of increasing SiDNASi concentration. Our results implied, firstly, that the aqueous phase colloid concentration should be carefully considered in determining colloidal retention behaviour in saturated porous media. Secondly, colloidal transport and retention dynamics in column studies should not be compared without considering colloid influent concentration. Thirdly, our results implied that the applicability of SiDNASi as a conservative subsurface tracer was restricted, since transport distance and retention was colloid concentration dependent. However, the uniqueness of the DNA sequences in SiDNASi imparts the advantage of concurrent use of multiple SiDNASi for flow tracking or porous media characterization
    corecore