118 research outputs found
The Hawking-Page crossover in noncommutative anti-deSitter space
We study the problem of a Schwarzschild-anti-deSitter black hole in a
noncommutative geometry framework, thought to be an effective description of
quantum-gravitational spacetime. As a first step we derive the noncommutative
geometry inspired Schwarzschild-anti-deSitter solution. After studying the
horizon structure, we find that the curvature singularity is smeared out by the
noncommutative fluctuations. On the thermodynamics side, we show that the black
hole temperature, instead of a divergent behavior at small scales, admits a
maximum value. This fact implies an extension of the Hawking-Page transition
into a van der Waals-like phase diagram, with a critical point at a critical
cosmological constant size in Plank units and a smooth crossover thereafter. We
speculate that, in the gauge-string dictionary, this corresponds to the
confinement "critical point" in number of colors at finite number of flavors, a
highly non-trivial parameter that can be determined through lattice
simulations.Comment: 24 pages, 6 figure, 1 table, version matching that published on JHE
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Quantization of Midisuperspace Models
We give a comprehensive review of the quantization of midisuperspace models.
Though the main focus of the paper is on quantum aspects, we also provide an
introduction to several classical points related to the definition of these
models. We cover some important issues, in particular, the use of the principle
of symmetric criticality as a very useful tool to obtain the required
Hamiltonian formulations. Two main types of reductions are discussed: those
involving metrics with two Killing vector fields and spherically symmetric
models. We also review the more general models obtained by coupling matter
fields to these systems. Throughout the paper we give separate discussions for
standard quantizations using geometrodynamical variables and those relying on
loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
Structural Basis for Certain Naturally Occurring Bioflavonoids to Function as Reducing Co-Substrates of Cyclooxygenase I and II
Recent studies showed that some of the dietary bioflavonoids can strongly stimulate the catalytic activity of cyclooxygenase (COX) I and II in vitro and in vivo, presumably by facilitating enzyme re-activation. In this study, we sought to understand the structural basis of COX activation by these dietary compounds.A combination of molecular modeling studies, biochemical analysis and site-directed mutagenesis assay was used as research tools. Three-dimensional quantitative structure-activity relationship analysis (QSAR/CoMFA) predicted that the ability of bioflavonoids to activate COX I and II depends heavily on their B-ring structure, a moiety known to be associated with strong antioxidant ability. Using the homology modeling and docking approaches, we identified the peroxidase active site of COX I and II as the binding site for bioflavonoids. Upon binding to this site, bioflavonoid can directly interact with hematin of the COX enzyme and facilitate the electron transfer from bioflavonoid to hematin. The docking results were verified by biochemical analysis, which reveals that when the cyclooxygenase activity of COXs is inhibited by covalent modification, myricetin can still stimulate the conversion of PGG(2) to PGE(2), a reaction selectively catalyzed by the peroxidase activity. Using the site-directed mutagenesis analysis, we confirmed that Q189 at the peroxidase site of COX II is essential for bioflavonoids to bind and re-activate its catalytic activity.These findings provide the structural basis for bioflavonoids to function as high-affinity reducing co-substrates of COXs through binding to the peroxidase active site, facilitating electron transfer and enzyme re-activation
On the Strength of First Order Phase Transitions
Electroweak baryogenesis may solve one of the most fundamental questions we
can ask about the universe, that of the origin of matter. It has become clear
in the past few years that it also poses a multi-faceted challenge. In order to
compute the tiny primordial baryonic excess, we probably must invoke physics
beyond the standard model (an exciting prospect for most people), we must push
perturbation theory to its ``limits'' (or beyond), and we must deal with
nonequilibrium aspects of the phase transition. In this talk, I focus mainly on
the latter issue, that of nonequilibrium aspects of first order transitions. In
particular, I discuss the elusive question of ``weakness''. What does it mean
to have a weak first order transition, and how can we distinguish between weak
and strong? I argue that weak and strong transitions have very different
dynamics; while strong transitions proceed by the usual bubble nucleation
mechanism, weak transitions are characterized by a mixing of phases as the
system reaches the critical temperature from above. I show that it is possible
to clearly distinguish between the two, and discuss consequences for studies of
first order transitions in general. (Invited talk given at the ``Electroweak
Physics and the Early Universe'' workshop, Sintra, March 23-25, 1994.)Comment: 16 pages, 4 figures not included (can be obtained from
hep-ph/9403310, or by request) RevTeX, DART-HEP-94/0
A Variational Deduction of Second Gradient Poroelasticity Part I: General Theory
Second gradient theories have to be used to capture how local micro
heterogeneities macroscopically affect the behavior of a continuum. In this
paper a configurational space for a solid matrix filled by an unknown amount of
fluid is introduced. The Euler-Lagrange equations valid for second gradient
poromechanics, generalizing those due to Biot, are deduced by means of a
Lagrangian variational formulation. Starting from a generalized Clausius-Duhem
inequality, valid in the framework of second gradient theories, the existence
of a macroscopic solid skeleton Lagrangian deformation energy, depending on the
solid strain and the Lagrangian fluid mass density as well as on their
Lagrangian gradients, is proven.Comment: 20 page
Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites
Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization—a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen
Calf health from birth to weaning. III. housing and management of calf pneumonia
Calfhood diseases have a major impact on the economic viability of cattle operations. A three part review series has been developed focusing on calf health from birth to weaning. In this paper, the last of the three part series, we review disease prevention and management with particular reference to pneumonia, focusing primarily on the pre-weaned calf. Pneumonia in recently weaned suckler calves is also considered, where the key risk factors are related to the time of weaning. Weaning of the suckler calf is often combined with additional stressors including a change in nutrition, environmental change, transport and painful husbandry procedures (castration, dehorning). The reduction of the cumulative effects of these multiple stressors around the time of weaning together with vaccination programmes (preconditioning) can reduce subsequent morbidity and mortality in the feedlot. In most studies, calves housed individually and calves housed outdoors with shelter, are associated with decreased risk of disease. Even though it poses greater management challenges, successful group housing of calves is possible. Special emphasis should be given to equal age groups and to keeping groups stable once they are formed. The management of pneumonia in calves is reliant on a sound understanding of aetiology, relevant risk factors, and of effective approaches to diagnosis and treatment. Early signs of pneumonia include increased respiratory rate and fever, followed by depression. The single most important factor determining the success of therapy in calves with pneumonia is early onset of treatment, and subsequent adequate duration of treatment. The efficacy and economical viability of vaccination against respiratory disease in calves remains unclear
Alliances and the innovation performance of corporate and public research spin-off firms
We explore the innovation performance benefits of alliances for spin-off firms, in particular spin-offs either from other firms or from public research organizations. During the early years of the emerging combinatorial chemistry industry, the industry on which our empirical analysis focuses, spin-offs engaged in alliances with large and established partners, partners of similar type and size, and with public research organizations, often for different reasons. We seek to understand to what extent alliances of spin-offs with other firms (either large- or small- and medium-sized firms) affected their innovation performance and also how this performance may have been affected by their corporate or public research background. We find evidence that in general alliances of spin-offs with other firms, in particular alliances with large firms, increased their innovation performance. Corporate spin-offs that formed alliances with other firms outperformed public research spin-offs with such alliances. This suggests that, in terms of their innovation performance, corporate spin-offs that engaged in alliances with other firms seemed to have benefitted from their prior corporate background. Interestingly, it turns out that the negative impact of alliances on the innovation performance of public research spin-offs was largely affected by their alliances with small- and medium-sized firms
- …