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Abstract We investigate the fragmentation instability of
hairy black holes in the theory with a Gauss—Bonnet (GB)
term in asymptotically flat spacetime. Our approach is
through the non-perturbative fragmentation instability. By
this approach, we investigate whether the initial black hole
can be broken into two black holes by comparing the entropy
of the initial black hole with the sum of those of two frag-
mented black holes. The relation between the black hole
instability and the GB coupling with dilaton hair are pre-
sented. We describe the phase diagrams with respect to the
mass of the black hole solutions and coupling constants. We
find that a perturbatively stable black hole can be unstable
under fragmentation.

1 Introduction

The no-hair theorem states that the black holes in Einstein—
Maxwell theory are characterized by only their mass, electric
charge, and angular momentum [1-4]. All other observable
parameters as regards a black hole are hidden in the event
horizon, i.e. the contributions from other parameters cannot
be accessible to an outside observer. Various gravity theo-
ries motivated by string theory and cosmology have received
more and more attention. In this perspective, various kinds
of black holes with different hairs have been investigated
[5-11]. The complex dilaton nonminimally coupled with the
Maxwell field presents the first hairy black hole [12,13]. The
black hole hairs were categorized into two types, primary
and secondary. A primary hair independently gives a new
quantum number to a black hole, so the black hole states are
expanded [14]. On the other hand, a secondary hair is deter-
mined by the primary hair [15]. The black hole dilaton hair is
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classified as secondary hair, because the dilaton field appears
to be coupled to a Maxwell field. Recently, dilaton hairs have
been discovered in many other theories of gravitation. One
theory motivated to show the next-leading order effect of the
inverse string tension &’ (16ak in the present paper) includes
higher-order curvature called the Gauss—Bonnet (GB) term
[16-21]. The GB term is the simplest one in the low energy
effective supergravity action. In four dimensions, the pres-
ence of a GB term does not have any ghost particles or any
problem of unitarity. In addition, the GB term does not change
the second-order equation of motion [16-24].

In the cosmological model, the dilatonic Einstein-Gauss-
Bonnet (DEGB) theory can provide the possibility of avoid-
ing the initial singularity of the universe [25-27]. It may vio-
late the energy condition in the singularity theorem thanks
to the presence of that term. Recently, the specific inflation-
ary model with the GB term has been studied [28-30]. In
the DEGB theory, the nontrivial real dilaton field appears in
the black hole solution [31-44] as a scalar hair. The black
hole hair is secondary [41] in the DEGB theory, because the
scalar hair is determined by the mass of the black hole. There
exists a minimum black hole mass, below which black hole
solutions do not exist. Above that minimum mass there exist
upper and lower branch solutions. The upper branch solu-
tions are stable under linear perturbations and approach the
Schwarzschild black holes in the large mass limit. Depend-
ing on the couplings, the lower branch solutions are unstable
under linear perturbations, and they end at a singular solution
[43-46]. Our goal is to investigate black hole instability by
a non-perturbative method on the upper branch.

In higher-dimensional spacetime, there exist various rotat-
ing black holes for given angular momentum. The Myers—
Perry (MP) black hole is a Kerr black hole generalized to
higher dimensions [47]. The black ring is another type of
solutions, which becomes more stable than MP black hole
in higher angular momentum [48-52]. For large angular
momentum, a black hole can undergo fragmentation [49].
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Fragmentation is based on the entropy [53-55] preference
between the solutions. Fragmentation allows for the upper
or lower bound of black hole charges [56]. Unstable black
holes are important and related to the non-equilibrium states
in the anti-de Sitter/conformal field theory (AdS/CFT) cor-
respondence [57,58].

In this paper, we compute and describe the fragmenta-
tion instabilities of the black hole with a GB term arising in
asymptotically flat 4-dimensional spacetime in which a frag-
mentation instability have not been done before. We found
that a stable solution under perturbation can be unstable under
fragmentation. We show the black hole instability depending
on the GB couplings. We also present the phase diagrams on
parameter space.

The outline of this paper is as follows: in Sect. 2, we intro-
duce our basic framework and numerical construction of the
black holes for the theory where the dilaton field is coupled
with the GB term. We numerically solve the equations of
motions to construct hairy black holes. We explain the black
hole properties in the theory. In Sect. 3, we describe insta-
bilities of black holes. In Sect. 4, we numerically investigate
black hole instabilities through fragmentation. Black hole
phase diagrams are presented in parameter space. In Sect. 5,
we summarize and discuss our results.

2 Hairy black holes in DEGB theory

As the simplest model of the effective low energy supergrav-
ity action, for the gravity theory we are motivated to use a
GB term to investigate the next-leading order effect of the
inverse string tension. The GB term is a good model to show
the quantum effect. This effect should affect instability of
black hole with GB term. We are interested in the instabil-
ity of a black hole due to fragmentation. The fragmentation
phenomena of a black hole may occur by a large quantum or
thermal phase transition. Einstein gravity does not allow for
these phenomena. In this perspective, one could introduce
the Einstein theory of gravity with a GB term as the effective
theory including a quantum correction.

2.1 Action and black hole solutions

To explore the fragmentation phenomena, we consider the
action as follows:

R 1
I = / V—gd*x [— — 5 V@V +ae_V¢RéB:|

2K
7{«/_d3KK

K

) ey

where g = det g,,,, k = 87 G, and R denotes the scalar cur-
vature of the spacetime M. The higher-curvature GB term
is given by RZz = R? — 4R,y R™ + Rype RMP°. The
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action has a dilaton field ® coupled with the GB term ae ™" ®
where o and y are constants, which we will call DEGB the-
ory. The second term on the right-hand side is the bound-
ary term [59-61], in which # is the determinant of the first
fundamental form, K and K, are the traces of the second
fundamental form of the boundary 9. M for the metric g,
and 7,,,, respectively. The gravitational field equations can
be obtained properly from a variational principle with this
boundary term. We adopt the sign conventions in Ref. [62].
The action Eq. (1) is symmetric under

y— —y,d—> —o. (2)

This allows for positive y values without loss of generality.
One can eliminate the coupling « dependency by a r —
\/LE transformation [40]. Under the transformation, the action
Eq. (1) corresponds to the « = 1 case. Non-zero o coupling
cases can be generated by « scaling, but the behaviors for
the « = 0 case cannot be generated in this way. To show a
continuous change to « = 0, we keep the parameter « in the
action.

For DEGB theory with given non-zero couplings « and y,
one can see DEGB black holes with a hair. There does not
exist black hole solutions without a hair in DEGB theory. If
we have ® = 0 in DEGB theory, dilaton equation of motion
in Eq. (4) has only the RéB term. However, the GB term
should be non-zero, so it cannot satisfy Eq. (4). The coupling
« could be absorbed in the redefinition of r as in Ref. [40],
where the black hole properties depend on « scale o except
for « = 0. For the coupling « = 0, the solutions become
a Schwarzschild black hole in Einstein gravity, and « is not
absorbed into the radial coordinate r in this work.

Setting y = 0, the DEGB theory becomes the Einstein—
Gauss—Bonnet (EGB) theory. The EGB black hole solution
with a single coupling « is the same as the Schwarzschild
one. This is because the GB term does not contribute to the
equations of motion. However, the GB term contributes to
the black hole entropy and influences the stability.

From the action (1), we obtain the Einstein equations and
the scalar field equation,

1 1 0 GB
Ruv = 38R = (9,90, = 2,,0,00°® + T ),
(3)

dulv/—gg" 8, @] —aye VP REL =0, 4)

a-

where the GB term contributes to the energy-momentum ten-
sor,

ToP = —8a(V* Ve " P Rypyo — De PRy,
1
42V, Ve VPR — 5vave—V‘I’R)

+40(2V, Ve VPR — De " R) g0, 5)
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and OJ = V, V# is the d’ Alembertian.

In this section, we follow the procedure of Ref. [41]. We
consider a spherically symmetric static spacetime with the
metric

ds? = —eXds? 4+ ¥ D dr? + r2(d6? + sin’ 6de?),  (6)

where the metric functions depend only on r. Then the dilaton
field equation turns out to be

X -Y 2) doye r®
e e

q)//+(b/<

r r

x [X’Y/eY +(1=-e1 (X” + XT(X/ — Y’))} )

Also, there are three Einstein equations for (¢t), (rr), and
(60) components, as follows:

v (1 3 4otyl<e_y<bcl>’(1 3 3e_Y)) _ Kr;)’z
r

1—¢¥  Bayke™

D
(@ —yd?)(1—e), (@®)

r

X' (1 B 4ayKe*V<1>CI)’(1 B 3eY)) _ kr®? n (e’ =1
r

2 r ’
)
X'+ <£/ + l) (X' —Y) = —kd? - M
2 r r
o'X’
% (q)/X” + (CDN _ )/CD/Z)X/ + 5 (X/ _ 3Y/)> ,
(10)

where only two out of three are independent. In other words,
one can choose three equations out of (7)—(10) as dynamical
equations depending on one’s convenience. In the present
work we choose the three equations (8)—(10) as the dynamical
equations and the remaining one, Eq. (7), as the constraint
equation.

Next, we eliminate Y’ in Egs. (8) and (10) using differ-
entiation of Eq. (9) with respect to r and rewrite the two
equations after solving the simultaneous equations. Then the
equations of motion for ®” and X" are obtained as follows:

" = L4 and X" = &, (11)
kW w

where Wy, W, and W are functions of only X', Y, ®, and
@', whose detailed expressions are shown in Appendix A.

We first examine the existence of a black hole solution with

an event horizon. The event horizon is simply the hypersur-

face at which g""(ry) = 0 or g,,(ry) = oco. We check the

divergence of the metric function ¢ ") at the event horizon
rp. We rearrange the terms in Eq. (9) to get

el = %[Aj:\/A2+B], (12)

where A = (r —dayke 7P ®)X' — Jkr’®? + 1and B =
48ayke™”PD'X’. We take the plus sign in Eq. (12).
Assuming ®;, and @), to be finite makes X’ — oo at the
horizon, as can be seen from Eq. (9). We expand the right-
hand side of Eq. (12) near the event horizon as follows:

¥ = (r —dayke 7P X’
N [4r + 32ayke VD — 23k @ + 8ayk?rie VP d3]
4(r — dayke VP’

+o<§0, (13)

where the quantity (r — 4ay ke " ®®’) is finite.
After substituting Eq. (13) in Eq. (11), we obtain the fol-
lowing:

DH
"= —X'+0Q), (14)
K E
" K 2 /
X" = _EX + OX") + O(), (15)
where

D =r—dayke 7,

H = 4ayk’r?e 7?0? — kr3d' + 12ayke 7 ®,

E =r* —daykrie 7?®" — 9602y ke ?,

K =r* +160%y%%r?e 272 — 8aykrie 7P
—48a%y ke 22, (16)

We check the behaviors of the metric functions and the
scalar field at the event horizon rj. To keep CDZ finite, we
choose H = 0. Then we can estimate ®” = O(1) from Eq.
(14)and X' = ﬁ + O(1) from Eq. (15). With H = 0, ®),
is related to @y, as follows:

rhey‘ibh

Q) = (1 + \/1 - 192e27q’ha2y21c/r2) . 3an
8ayk

From the condition that <I>;l have real values we obtain the
following condition:

eV < ﬁ; (18)
o y+/192k

This is the condition for the existence of a black hole solu-
tion with appropriate boundary values r;, and ®;, for given
parameter values.

@ Springer
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The solutions take the asymptotic form

KoM +00/r, (19)
r
o

® x> Pog + = + oa/r?, (20)

where M denotes the ADM mass, Q the scalar charge, and
®, the asymptotic value of the scalar field, which will be
used to rescale the scalar field and radial coordinate in this
work. The mass of a hairy black hole is represented as follows
[63]:

M(r) = M(rp) + Mhaj- 2D

where M (r) = %rh is the mass of a black hole subtracting
the contribution coming from the existence of a scalar hair.
The second term in the right-hand side, My, represents the
contribution from the scalar hair with pOB coming from the
DEGB term. The M (r) increases up to some constant as the
distance from the horizon increases, if ®" and pOP rapidly
decrease to zero.

2.2 Numerical construction of black holes

We obtain the DEGB black hole by solving Egs. (9) and (11),
generally.

We impose the initial conditions as follows: We first fix
the couplings « and y in DEGB theory. For a hairy black hole
having rj, the maximum value of ®;, saturates the inequality
Eq. (18). Hairy black hole solutions exist for ®; less than
the maximum ®;, value. @} is obtained from Eq. (17). The
initial value of X’ is obtained from the relation X’ = ﬁ
We choose initial values r = rj, + € where € = 10710, The
initial value of Y is obtained from Eq. (9). The initial value
of X is obtained from the equality ¥ = —X to be satisfied in
the asymptotic region. The equations are integrated through
the fourth-order Runge—Kutta—Fehlberg method from ry, to
r — 00. Our calculations are for the relative tolerance of
108 and the absolute tolerance of 10~8. The ADM mass
2M is obtained from Eq. (19).

The scalar field ® should be asymptotically flat, so the
values of the scalar fields can be set to &Joo = 0 in the
asymptotic region. Under this condition, we redefine ® by
® = & — do. To make the equations of motion invari-
ant under this field shift, the radial coordinate is rescaled to
r — F = re?®e/2 In the rescaled system, the mass M
and charge Q are also rewritten M — M = Me¥®=/2 and
0 — Q = QeV®=/2, respectively. The other parameters
are not changed on the rescaled system. Under this rescal-
ing, the whole solution curve (r;, ®;) corresponds to the
unique solution line (77, (iDh). Therefore, even if we obtain
black hole solutions for the specific horizon r, with cou-
plings « and y, the solution becomes the same solution as

@ Springer

in the rescaled system. Every choice on r, leads to the same
solution, so our solution is universal. The detailed discus-
sions are in Appendix B. This rescaled system still satisfies
the equations of motions in Egs. (7), (8), (9), and (10) as
well as the boundary condition in Eq. (18). We choose the
parameter k = 1 for convenience without loss of generality.
From now on, we use rescaled variables.

The scalar field ® is obtained for given couplings and
black hole horizons, as shown in Fig. la. The scalar field
profiles start at negative values @ at the black hole hori-
zon 7y, monotonically approaching zero. The bottom profile
of the blue solid line shows the possible minimum horizon
radius and maximum magnitude scalar field |®},| which sat-
urates inequality in Eq. (18) for given couplings « and y . The
upper lines satisfy the inequality in Eq. (18). If DEGB black
hole horizon becomes larger, the magnitude of the scalar field
becomes smaller. In the large horizon radius limit, the scalar
field approaches zero, and then the black hole becomes a
Schwarzschild black hole. Figure 1b shows that the metric
component g, becomes infinite at the horizon, while g;; is
approaching zero, whereas both metrics are asymptotically
approaching the value 1.

For fixed «, the singular point S and minimum mass C
exist for large y, as shown in Fig. 2a. There exists a mini-
mum mass Mmin at the extremal point C, as shown in Fig. 2a
[41-44]. For small y, the singular point S gets closer to the
minimum mass point C, as shown in Fig. 2b. The solutions
between point S and C in Fig. 2a are unstable for pertur-
bations and end at the singular point S, which saturates to
equality in Eq. (18). In other words, there are two black holes
for a given mass in which the smaller one is unstable under
perturbations. Below y = 1.29, the solutions are perturba-
tively stable and approach the Schwarzschild black hole in
the limit of y going to zero. These solutions depend on the
coupling y, as shown in Fig. 2. We will investigate these
solutions under fragmentation below y = 1.29.

In Fig. 3, the black hole mass M and hair J)h are plotted
for different values of the coupling y. Each point describes
the black hole mass M (solid lines) and q~5h (dashed lines)
for a given horizon 7. The black hole mass monotonically
increases with respect to 7,. The dilaton field magnitude ¢y,
monotonically decreases with respect to 7. For given y, the
black hole mass M and ®;, have minimum values saturating
inequality Eq. (18). When the coupling y decreases in Fig. 3,
both lines move down at the left-hand side. Eventually, the
solutions become those of EGB theory in the limitof y — 0,
so the mass profile with respect to 7, should approach the line
of 7, = 0. The graph M is proportional to +/a as mentioned.

3 Instability from fragmentation

Black holes may undergo instability at some couplings and
break apart into black holes [49]. The initial phase is a single
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Fig. 1 a Scalar field profiles for radial coordinate in y = 1/6, and « = 1/16. The five solid lines correspond to different DEGB black hole
solutions. b The numerical solutions represent the metric components g;; and g, forry, = 1
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Fig. 2 Coupling y dependency of the minimum mass for fixed
o = 1—16. For the coupling « = 1/16, a the singular point S
and the minimum mass C exist for y = V2 (green). b The

black hole having mass M , which is the function of an initial
horizon 7. The final phase is two black holes far from each
other. One of these black holes has a mass m and a linear
momentum Pj, and the other has M — i and P, under mass
and momentum conservation. The total linear momentum is
zero in the initial and final phases. This final phase is spec-
ified by a mass ratio § = % We denote the final phase as

(8, 1 —§). The maximum value of § is % for half fragmenta-

tion. The possible minimum mass ratio 8 is given as MA‘;" .The

minimum mass ratio § has a finite value for a DEGB black

v=13and 1.29, a=1/16

1.615
1611 4 5053
1.5953
1.605} 0o
1.5953 1.59531
161  1.4698 1.47 1.47021.4704
=
4505}
1.5864
1 50| 1:5862
1.586 1.58607
1.5851 1.46 1.465
158 ‘ ‘ ‘ ‘ ‘
142 1.44 1.46 1.48 15
Th
(b)

singular point S coincides with the point C between y = 1.29
(blue) and 1.30 (cyan). There is no lower branch below y = 1.29

hole, because the black hole has minimum mass Mmin. The
black holes can be fragmented only when it exceeds twice
the minimum mass. With a black hole mass below twice the
minimum mass, there are no fragmented black hole solu-
tions, so these black holes are absolutely stable. The mass
and momenta of the black hole are related [64],

Mz\/(8M)2+P12+\/(1 — 8)2M? + P3. (22)

The linear momenta are arbitrary, so we set P = P, =
0 to maximize the total entropy of the final phase. In this

@ Springer
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2

Fig. 3 The black hole mass M (solid) and ®}, (dashed) with respect
to 7, for y = /2 (green), y = 1.3 (cyan), y = 1.29 (blue), y = 1/2
(red), y = 1/6 (black), and y = O (purple). In the limit of the coupling
y — 0, the solution approaches the Schwarzschild cases

condition, the black hole slightly breaks into two black holes
with negligible momenta. The initial phase decays to the final
phase if the final entropy is larger than that of the initial phase.

The entropy of the initial phase S; is that of one DEGB
black hole. The black hole entropy with the form of a poly-
nomial of the Ricci scalar is given as

oL
S = _27'[/ Egvpaeu,uepo'v E%Upa = 9R )
z Hvpo

(23)

where X, €,,,,, and L are the bifurcation horizon 2-surface, the
volume element binormal, and the Lagrangian density [65—
69]. The initial DEGB black hole entropy [44] is

~2

T 8 5

Si= "0 (14 o) (24)
G ry

where the DEGB black hole entropy has an additional term
from the hair contribution. This additional term exists in the
Euclidean path integral [61]. The entropy can be obtained
from the relation S = BE — [g, in which 8 is the inverse of
the temperature, E is the energy or the mass, and /g is the
Euclidean action. For the Schwarzschild black hole in Ein-
stein gravity, the quantity /g has only a contribution coming
from the boundary term, % = %. For the black hole in
EGB and DEGB theory, there is a non-vanishing contribu-
tion from the bulk term with the higher-curvature GB term in
the Euclidean action. The non-vanishing contribution gives
rise to the additional entropy correction Eq. (24).

After fragmentation, we expect that two black holes are far
from each other in the final phase. Therefore, we suppose that
the black holes do not interact as if they were independent
spacetimes. In this case, the black hole entropy in the final
phases is approximately described by the simple sum of two

@ Springer

fragmentated black holes. Precisely, if we treat two fragmen-
tation black holes with interaction, the final phase entropy
should include also an interaction term instead of only a sim-
ple sum. In the Euclidean path integral, each entropy of a
black hole has the contributions coming from both the bulk
and the boundary term. Thus we have added both contribu-
tions for the two black holes, which will cause the fragmen-
tation instability.

First, as the simplest case, we study the possible frag-
mentation of a Schwarzschild black hole. The fragmentation
instability depends on the mass ratio § between the initial
and the final phase of the black hole mass. For the case of
(8, 1 — &), the entropy ratio is given as

Sy _ @m)* + (A = 9)in)’

=82+ (1—29)2%, 25
s ;]% ( ) (25)

where we denote the initial and final phase entropy S; and Sr.
The entropy ratio is always smaller than 1, so the entropy of
a initial phase is larger than that of a final phase. Therefore,
a Schwarzschild black hole is always stable under fragmen-
tation. The entropy ratio marginally approaches 1 in § — 0,
because the entropy is proportional to the square of the hori-
zon radius, while the mass is proportional to the horizon
radius.

These phenomena become different in the theory with the
higher-order curvature term. In the EGB theory of y = 0, the
static black hole metric is the same as that of a Schwarzschild
solution and it exists for arbitrary mass. However, the entropy
has a quantum correction coming from the GB term of the
higher order of the curvature. The initial black hole entropy
is

= A (B T g (26)
"7 4G 2 )Gt '

Unlike Schwarzschild black holes, the fragmentation insta-

bility occurs depending on the fragmentation ratio §. For the

case of (§, 1 — &) fragmentation, the final phase entropy is

given by

T ~ 2 s ~ N2
Sy = 5 (6f) +82ic) + (1 = ))* + 8erk),  (27)

where the initial and final phases are connected under the
quantum or thermal fluctuation, which may allow for the
topology changing process. Exactly, the entropy contribu-
tion of the GB term in the final phase is not twice that in the
initial phase. Also, that is not the same for a black hole in the
initial phase. This is because the action integral of the GB
term is an invariant quantity which provides the information
on the topology of that spacetime manifold. The symmetry
of the initial black hole spacetime is changed or broken into
that of two black holes. Furthermore, black holes include the
binding energy between them. In order to obtain the exact
prescription, we should solve the difficult non-linear equa-
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Fig. 4 a Fragmentation ratio and EGB black hole entropy. The black
solid line is the initial phase entropy. The black, red, blue, cyan, and
green dashed-dot lines are the cases of(%, %), (%, %), (%, %), (11—0, %),
and (10719, 1 — 10719). The crossing points go up from point A to D
with changing §. We fix k = 1. b Phase diagram of EGB black hole

tions of motions in the DEGB theory. However, our goal is
to investigate these phenomena thermodynamically. To sim-
plify this problem, we assume that the fragmented black holes
are far from each other, thus the black holes could exist inde-
pendently in the spacetime with each asymptotic boundary
and we could ignore the binding energy between the black
holes. The EGB black hole is unstable if

Sy _ (OF)? + o) + (1 = §)7n)* + 8ar)

1. (28
S; (72 + 8ak) (28)

In the small mass limit, the ratio becomes 2 from the dom-
inant correction term. On the other hand, in the large mass
limit, the entropy ratio becomes 82 + (1 - 8)2, the same as
that of the Schwarzschild case. Therefore, the EGB black
hole with a small mass is unstable, while a massive EGB
black hole is stable. There exists a crossing point between
the initial and the final phase entropy. The crossing points
are obtained from S¢/S; = 1,

~ oK
Tcross = 21/ m

For a given parameter, EGB black holes are unstable below
Feross- There is no minimum mass of the EGB black hole, so
the mass ratio § has arange of 0 < § < % Several initial and
final phase entropies for mass ratios are shown in Fig. 4a. The
smaller mass ratio covers the larger mass range, as shown in
Fig. 4a. The overall behaviors of the entropy are independent

(29)

*o=10"107
3.5F b
Y5=1/2
3r =1/3 ]
25} 6=1/4 -
oM
2 L .
1.5F Unstable (Entropy) 1
1 L .
0.5F ]
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1
«
(b)

for 6 = 1/2 (black solid line), 5§ = 1/3 (red solid line), § = 1/4 (blue
solid line), § = 1/10 (cyan solid line), and § = 10-10 (green solid line)
fragments corresponding to crossing points between the initial and final
phase of the black hole entropy; each color of the lines is for the same
as those in (a)

on the mass ratio, in the same way as the MP black hole cases
[49,56].

Each mass ratio § leads to each line in the phase diagram
for given o, as shown in Fig. 4b. The mass ratio can have
continuous values, and the black hole has stable and unstable
phases. The minimum unstable region is at § = % For the
limit of § — 0, all of the EGB black holes become unstable
for fragmentation, as shown in Fig. 4b.

The DEGB black hole entropy ratio between the initial and
the final entropy including the higher-curvature corrections
is in the approximation 7, ~ 2M,

Sy (87 + 8ake 7 ®0) 4 (1 — 8)y)? + Bake 7 ®1-0)

Si (7}% + 80{/(6—1’&)11)

(30)

where &Dh, &>5, and @ 1—s are the scalar field values at the
initial and final black hole horizon. In the large mass limit
7, > 1, the entropy ratio becomes that of the Schwarzschild
case,

S
%:52+(1—5)2<1.

1

3D

Thus, massive DEGB black holes are stable under fragmen-
tation. The small mass limits are bounded to Mmin. DEGB
black holes of mass Mmin are absolutely stable, because there
are no fragmented black hole solutions. For values larger than

Mmin, the black hole stability is dependent on an entropy cor-
rection term. The entropy ratio is given

@ Springer
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Fig. 5 Schematic illustration
of the fragmentation of hairy
black hole from the initial mass
2M one to two final masses. The
blurred gray areas of each black
hole represent the case that the

hairy profiles exist outside the ‘g
event horizon of the black holes.

a Fragmentation to M and M. b M
Fragmentation to Mpin and
2M — Mmin
(a)
2 12 Saxe™”®s 4 8ake " P13

g, SHG-DT+ >
I= - , (32)

: —r®p

i | 4 Bewe 70

T

where the horizon radius square term is important in the small
black hole. The entropy ratio may increase for a smaller mass
like the EGB black holes, but there is an ambiguity since the
DEGB black holes have a minimum mass. In this case, there is
no proper approximation to describe the instabilities of small
mass DEGB black holes. This should become clear through
numerical calculation. Also, the minimum mass bounds the
fragmentation mass ratio. It is not seen in the Schwarzschild
black hole or EGB black hole. The DEGB black holes have
more variety as regards properties and behaviors. We will
obtain detailed behaviors through numerical calculations.

4 Numerical analysis for fragmentation instability

We investigate the fragmentation instability using a numeri-
cal analysis. We consider the fragmentation cases of §<§<
%, as shown in Fig. 5.

The DEGB black hole entropies in Eq. (24) are shown
with respect to the horizon radius in Fig. 6 for y = % and

= & with & = -%. Unlike EGB black holes for a blue line,
DEGB black holes have a minimum mass Mmin for given
parameters.

A red circle corresponds to the initial black hole having a
minimum mass. Below the minimum mass, there is no DEGB
black hole solution region. The red box corresponds to a
fragmented black hole having a minimum mass. The over-
all behaviors are similar to those of EGB black holes. The
DEGB black hole entropy is slightly larger than that of EGB
theory, because of the hair contribution. Possible fragmenta-
tion of DEGB black holes occurs at twice the minimum mass
with (%, %) mass ratio. Below half fragmentation, massive
DEGB black holes are in the stable (mass) region between
red circle and box. In this range, these black holes have no
final phase solutions corresponding to decay. In Fig. 6a, the
initial phases are in the stable (entropy) region, because all

@ Springer

(b)

final phase entropies are smaller than that of the initial phase
above red box. However, in Fig. 6b, ared box is located under
the crossing point, so DEGB black holes are in the unstable
(entropy) region between the red box and the crossing point.
Also, above the crossing point, the initial phases are in the
stable (entropy) region. For the limit of y — 0, the red box
must approach 7, = 0. DEGB black holes are more unstable
for the smaller mass ratio §, the same as for the EGB black
hole cases. The largest unstable (entropy) region is given at
8. This fragmentation always starts at the (%, %) mass ratio
and then appears above it, as shown in Fig. 6b. The crossing
point from (8, 1 —§) fragmentation appears for a larger initial
black hole mass than that of the EGB black hole. As a result,
DEGB black holes are stable in a larger mass range.

In Fig. 7 for the given couplings y = % and y = %,
the DEGB black hole phases are represented with respect to
mass M. The black hole mass M is proportional to /&, s0
the phase boundary is also proportional to ,/a. In the case of
a large y, as we see in Fig. 6a, the DEGB black holes have
three phases such as no DEGB black hole solution, and stable
(mass) and stable (entropy) regions, as shown in Fig. 7a. In
the case of a small coupling y, as shown Fig. 6b, the DEGB
black holes have four phases such as no DEGB black hole
solution, and stable (mass), unstable (entropy), and stable
(entropy) regions as shown in Fig. 7b. In the limit of y — 0,
DEGB theory approaches the EGB theory, so the final phases
are dominant for a small mass, and the black holes are unsta-
ble, as shown in Fig. 7b. The unstable region from fragmenta-
tion appears between the stable and absolutely stable region.
The initial phase still is stable for a large mass. The largest
unstable region comes from (5 ,1-38 ) fragmentation. These
unstable regions start at the origin of Fig. 7b. In the limit of
a — 0, the stable (entropy) region covers all values of mass
2M as shown in Fig. 7b. The other regions such as the one
having no DEGB black hole solution, and stable (mass) and
unstable (entropy) regions disappear in the limit of « — 0.
In other words, only the stable (entropy) region occurs, and
the other regions have vanished at ¢ — 0.

DEGB black hole phase diagrams are represented with
respect to mass M and y in Fig. 8. DEGB black holes have
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y=1/2,a0=1/16
20 T

18 10.6 ]

N
N
T

N
o
T

Entropy, S

o]
T

Fig. 6 The initial and final phase entropies with respect to ry, ; for the
given couplings y and «. The blue solid line and blue dashed-dot line
are initial and final phase entropies in EGB theory as a reference for
(3. 1). The red solid line and red dashed-dot line are initial and final

y=1/2
2 . ‘
1.8}
Stable (Entropy)
1.6
1.4}
121 Stable (Mass)
oM 1}
0.8 g
0.6f g
0.4t oA
No DEGB black hole solution
0.2 g
00 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
o
(a)

v=1/6,a=1/16

20

18 5 /7% 49 I

16} <7 o | -1 ,
45| g 4.8{/'._.

1| 47 <

0 0.5 1 1.5 2
Th,i

(b)

phase entropies in DEGB theory for (%, %). The initial phase exists
above the red circle for the minimum mass. The final phase exists above
the red box for (%, %). The green solid line represents fragmentation
for a marginal mass ratio §

y=1/6
2
1.8}
Stable (Entropy)
1.6f
14l Unstable (Entropy)
s
2M L Stable (Mass)
0.8 ,
0.6 .
0.4 )
No DEGB black hole solution
0.2 ,
0 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
a
(b)

Fig. 7 The phase diagrams with respect to o and M in fixed y. The red solid line represents (%, %) fragmentation. The green solid line represents

(8,1 — §) fragmentation

stable (entropy), stable (mass), and no DEGB black hole solu-
tion phases for the large y, while DEGB black holes have four
phases such as stable (entropy), unstable (entropy), stable
(mass), and no DEGB black hole solution phases for small
y, as shown in Fig. 8. The stable (mass) region is bounded by
the minimum mass of the black hole. The (8, 1 —§) fragmen-
tation gives the largest unstable (entropy) region of the DEGB
black holes and meets the stable (mass) region at twice the
minimum mass or at (%, %) fragmentation. The DEGB black
hole is in the unstable (entropy) region for fixed (§; see the

1 — 8) horizontal blue line, as shown in Fig. 8. For example,
the stable (mass) region is larger in the case of § = % frag-
mentation, such as the region /C K. The unstable (entropy)
region becomes smaller, such as the region EC D. The sta-
ble (entropy) region is above the line EDI. The S, 1-=29)
fragmentation is the marginal boundary of an arbitrary mass
ratio fragmentation, so all of the fragmentations have ended
at the (5, 1 — §) fragmentation line, like (3, §) fragmenta-
tion, as shown in Fig. 8. For example, the fragmentations for
(3. %), (4. 3), and ({5, 55) are shown in Fig. 8. In the limit
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087/ Ungtable (Entropy) Stable (Mass)

No DEGB black hole solution

0 ‘ ‘ ‘ ‘
co 0.05 0.1 0.15 0.2 0.25
v

Fig. 8 The phase diagrams with respect to y and M for fixed « for
(%, %) (red solid line), (%, %) (blue solid line), (1—10, 19—0) (cyan solid
line), and (8, 1 — §) (green solid line) fragmentation

of y — 0, these behaviors correspond to the EGB black hole
cases, so black hole solutions exist for all values of mass and
have a crossing point in the y = 0 slice. In this limit, black
holes only have two phases, the unstable (entropy) and stable
(entropy) phases.

5 Summary and discussion

We have investigated the fragmentation instability of black
holes with a GB term. To explore these phenomena, we have
numerically constructed the static DEGB hairy black hole in
asymptotically flat spacetime. The two couplings « and y
affect the scalar hair and mass of the black hole. The profiles
of the scalar fields monotonically go to zero at the asymptotic
region. The initial magnitudes of dilaton fields are almost
inversely proportional to the black hole horizons. When the
scalar field on the horizon is maximum, the DEGB black hole
solution has a minimum horizon size, as shown in Fig. 1.
The black hole solutions with respect to the coupling y are
shown in Fig. 3. The black hole mass M and horizon 7,
are proportional to 1/, so the black hole properties can be
scaled with respect to o except o« = 0, the Schwarzschild
black hole case. The DEGB black hole has a minimum mass
for given couplings. The amount of black hole hair decreases
as the DEGB black hole mass increases. DEGB black hole
configurations go to the EGB black hole cases for small y.
In the EGB black hole cases, the black hole solution exists
for all values of the black hole mass. In other words, the
minimum mass becomes zero.

We have investigated the DEGB black hole instability with
fragmentation, which is based on thermal or quantum fluctu-
ations. We found the unstable DEGB black hole phase under

@ Springer

fragmentation, even if these phases are stable under perturba-
tion. These instabilities have been numerically investigated
with respect to the couplings.

In the limit of y — 0, the DEGB black hole approaches
the EGB black hole. The EGB black hole simply has only two
phases, the stable and unstable phases, under fragmentation.
The small EGB black hole is unstable and is fragmented to
a final phase. The relatively massive EGB black hole is sta-
ble. The mass ratio § = % gives the smallest unstable region.
In the limit of y — 0, EGB black holes are unstable. For
the finite values of y, the DEGB black hole has a minimum
mass, so more phases appear. The mass ratio § is bounded
below 8. The mass ratio has a range between § and § = %
The phase diagrams for a given coupling are shown in Fig. 7.
For small y, the DEGB black hole has four phases, such as
the solution with no DEGB black hole, and the stable (mass),
unstable (entropy), and stable (entropy) phases. There is no
fragmented black hole solution between this minimum mass
and twice of the minimum mass, so the initial black hole
is in the stable (mass) region with a mass in such a range.
Above twice the minimum mass, the black hole can be frag-
mented with the mass ratio (6, I — §). The fragmentation is
bounded to §, which is the minimum fragmentation for the
given couplings. Above § fragmentation with respected to
the black hole mass, the DEGB black hole gets in the stable
(entropy) region under fragmentation. These phases reduce to
three phases for large y . The unstable (entropy) region under
fragmentation approaches the stable (mass) region and then
disappears. Above the minimum mass, the DEGB black hole
is stable. In the limit of « to zero, the stable (entropy) region
is dominant, and the other regions have disappeared.

The DEGB black hole phases are also shown in Fig. 8.
Through these diagrams, we can show that the § fragmen-
tation plays the role of a marginal fragmentation. For given
o, the DEGB black hole has four phases, such as a solu-
tion with no DEGB black hole, and stable (mass), unstable
(entropy) and stable (entropy) phases for small y. For large
y, the DEGB black hole has three phases, such as a solu-
tion with no DEGB black hole, and stable (mass) and stable
(entropy) phases. These behaviors have not changed with
respect to «. The smallest unstable region comes from %
fragmentation, which meets at § fragmentation and the sta-
ble (mass) region. The mass ratio § fragmentation gives the
largest unstable (entropy) region. The § fragmentation is the
marginal fragmentation for any mass ratio. We have found
the phase diagram of the fragmentation instability for a black
hole mass and two couplings.
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Appendix A

The detailed forms of the functions in Eq. (11) are as follows:
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x (=13 + 3e"yrayx @’
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Appendix B

The initial conditions for &, and r, satisfy the inequality
in Eq. (18) for the given couplings « and y. The different
choices of r; provide different values of ®;, as shown in
Fig. 9a. The minimum values of ®;, for each solid line satisfy
the inequality in Eq. (18). Each solid line gives different
profiles ®(r). As a result, the values of the scalar fields at
infinity @, are different for each solid line, as shown in
Fig. 9b.

Using scalar field values ®,, we obtain arescaled system,
as shown in Fig. 10. For each rj, choice, the rescaled scalar
fields <f>h are rearranged in Fig. 10a, and the rescaled scalar
field values ®;, are all the same for different choices of ry,.
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y=1/6,0=1/16

1of A A

continue

(a)

Fig. 9 a The allowed values of @, for given r;, = 1/2, 1, and 2 with given couplings. b The values of ®(r) for r — oo for given r;, = 1/2,

and 2 with given couplings
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continue
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\ continue
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Fig. 10 a The initial conditions &, for given rj, = 1/2, 1, and 2 with given couplings. b The different initial conditions of given r;, = 1/2, 1, and

2 converge to a line with respect to the black hole mass M or horizon 7,

Next, the horizon radii are also rescaled to 7. Eventually,
the different choices of ®; and rj, converge to a unique black
sold line in Fig. 10b. In other words, the 2-dimensional solu-
tion space reduces to an actually 1-dimensional line. There-
fore, whatever we choose for any value of ry,, there is no loss
of generality.
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