168 research outputs found

    Generation of Variants in Listeria monocytogenes Continuous-Flow Biofilms Is Dependent on Radical-Induced DNA Damage and RecA-Mediated Repair

    Get PDF
    The food-borne pathogen Listeria monocytogenes is a Gram-positive microaerophilic facultative anaerobic rod and the causative agent of the devastating disease listeriosis. L. monocytogenes is able to form biofilms in the food processing environment. Since biofilms are generally hard to eradicate, they can function as a source for food contamination. In several occasions biofilms have been identified as a source for genetic variability, which potentially can result in adaptation of strains to food processing or clinical conditions. However, nothing is known about mutagenesis in L. monocytogenes biofilms and the possible mechanisms involved. In this study, we showed that the generation of genetic variants was specifically induced in continuous-flow biofilms of L. monocytogenes, but not in static biofilms. Using specific dyes and radical inhibitors, we showed that the formation of superoxide and hydroxyl radicals was induced in continuous-flow biofilms, which was accompanied with in an increase in DNA damage. Promoter reporter studies showed that recA, which is an important component in DNA repair and the activator of the SOS response, is activated in continuous-flow biofilms and that activation was dependent on radical-induced DNA damage. Furthermore, continuous-flow biofilm experiments using an in-frame recA deletion mutant verified that RecA is required for induced generation of genetic variants. Therefore, we can conclude that generation of genetic variants in L. monocytogenes continuous-flow biofilms results from radical-induced DNA damage and RecA-mediated mutagenic repair of the damaged DNA

    Prediction of arterial pressure increase after fluid challenge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mean arterial pressure above 65 mmHg is recommended for critically ill hypotensive patients whereas they do not benefit from supranormal cardiac output values. In this study we investigated if the increase of mean arterial pressure after volume expansion could be predicted by cardiovascular and renal variables. This is a relevant topic because unnecessary positive fluid balance increases mortality, organ dysfunction and Intensive Care Unit length of stay.</p> <p>Methods</p> <p>Thirty-six hypotensive patients (mean arterial pressure < 65 mmH) received a fluid challenge with hydroxyethyl starch. Patients were excluded if they had active bleeding and/or required changes in vasoactive agents infusion rate in the previous 30 minutes. Responders were defined by the increase of mean arterial pressure value to over 65 mmHg or by more than 20% with respect to the value recorded before fluid challenge. Measurements were performed before and at one hour after the end of fluid challenge.</p> <p>Results</p> <p>Twenty-two patients (61%) increased arterial pressure after volume expansion. Baseline heart rate, arterial pressure, central venous pressure, central venous saturation, central venous to arterial PCO<sub>2 </sub>difference, lactate, urinary output, fractional excretion of sodium and urinary sodium/potassium ratio were similar between responder and non-responder. Only 7 out of 36 patients had valuable dynamic indices and then we excluded them from analysis. When the variables were tested as predictors of responders, they showed values of areas under the ROC curve ranging between 0.502 and 0.604. Logistic regression did not reveal any association between variables and responder definition.</p> <p>Conclusions</p> <p>Fluid challenge did not improve arterial pressure in about one third of hypotensive critically ill patients. Cardiovascular and renal variables did not enable us to predict the individual response to volume administration.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00721604">NCT00721604</a>.</p

    Identification of the Genes Involved in Riemerella anatipestifer Biofilm Formation by Random Transposon Mutagenesis

    Get PDF
    Riemerella anatipestifer causes epizootics of infectious disease in poultry that result in serious economic losses to the duck industry. Our previous studies have shown that some strains of R. anatipestifer can form a biofilm, and this may explain the intriguing persistence of R. anatipestifer on duck farms post infection. In this study we used strain CH3, a strong producer of biofilm, to construct a library of random Tn4351 transposon mutants in order to investigate the genetic basis of biofilm formation by R. anatipestifer on abiotic surfaces. A total of 2,520 mutants were obtained and 39 of them showed a reduction in biofilm formation of 47%–98% using crystal violet staining. Genetic characterization of the mutants led to the identification of 33 genes. Of these, 29 genes are associated with information storage and processing, as well as basic cellular processes and metabolism; the function of the other four genes is currently unknown. In addition, a mutant strain BF19, in which biofilm formation was reduced by 98% following insertion of the Tn4351 transposon at the dihydrodipicolinate synthase (dhdps) gene, was complemented with a shuttle plasmid pCP-dhdps. The complemented mutant strain was restored to give 92.6% of the biofilm formation of the wild-type strain CH3, which indicates that the dhdp gene is associated with biofilm formation. It is inferred that such complementation applies also to other mutant strains. Furthermore, some biological characteristics of biofilm-defective mutants were investigated, indicating that the genes deleted in the mutant strains function in the biofilm formation of R. anatipestifer. Deletion of either gene will stall the biofilm formation at a specific stage thus preventing further biofilm development. In addition, the tested biofilm-defective mutants had different adherence capacity to Vero cells. This study will help us to understand the molecular mechanisms of biofilm development by R. anatipestifer and to study the pathogenesis of R. anatipestifer further

    Muscle Hypertrophy in Prepubescent Tennis Players: A Segmentation MRI Study

    Get PDF
    PURPOSE: To asses if tennis at prepubertal age elicits the hypertrophy of dominant arm muscles. METHODS: The volume of the muscles of both arms was determined using magnetic resonance imaging (MRI) in 7 male prepubertal tennis players (TP) and 7 non-active control subjects (CG) (mean age 11.0 ± 0.8 years, Tanner 1-2). RESULTS: TP had 13% greater total muscle volume in the dominant than in the contralateral arm. The magnitude of inter-arm asymmetry was greater in TP than in CG (13 vs 3%, P<0.001). The dominant arm of TP was 16% greater than the dominant arm of CG (P<0.01), whilst non-dominant arms had similar total muscle volumes in both groups (P = 0.25), after accounting for height as covariate. In TP, dominant deltoid (11%), forearm supinator (55%) and forearm flexors (21%) and extensors (25%) were hypertrophied compared to the contralateral arm (P<0.05). In CG, the dominant supinator muscle was bigger than its contralateral homonimous (63%, P<0.05). CONCLUSIONS: Tennis at prepubertal age is associated with marked hypertrophy of the dominant arm, leading to a marked level of asymmetry (+13%), much greater than observed in non-active controls (+3%). Therefore, tennis particpation at prepubertal age is associated with increased muscle volumes in dominant compared to the non-dominant arm, likely due to selectively hypertrophy of the loaded muscles

    Structural diversity of supercoiled DNA

    Get PDF
    By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA min icircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function

    agr-Mediated Dispersal of Staphylococcus aureus Biofilms

    Get PDF
    The agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). Recent studies have suggested a role for the agr system in S. aureus biofilm development, as agr mutants exhibit a high propensity to form biofilms, and cells dispersing from a biofilm have been observed displaying an active agr system. Here, we report that repression of agr is necessary to form a biofilm and that reactivation of agr in established biofilms through AIP addition or glucose depletion triggers detachment. Inhibitory AIP molecules did not induce detachment and an agr mutant was non-responsive, indicating a dependence on a functional, active agr system for dispersal. Biofilm detachment occurred in multiple S. aureus strains possessing divergent agr systems, suggesting it is a general S. aureus phenomenon. Importantly, detachment also restored sensitivity of the dispersed cells to the antibiotic rifampicin. Proteinase K inhibited biofilm formation and dispersed established biofilms, suggesting agr-mediated detachment occurred in an ica-independent manner. Consistent with a protease-mediated mechanism, increased levels of serine proteases were detected in detaching biofilm effluents, and the serine protease inhibitor PMSF reduced the degree of agr-mediated detachment. Through genetic analysis, a double mutant in the agr-regulated Aur metalloprotease and the SplABCDEF serine proteases displayed minimal extracellular protease activity, improved biofilm formation, and a strongly attenuated detachment phenotype. These findings indicate that induction of the agr system in established S. aureus biofilms detaches cells and demonstrate that the dispersal mechanism requires extracellular protease activity

    Towards the Establishment of a Porcine Model to Study Human Amebiasis

    Get PDF
    BACKGROUND: Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i) the trophozoite, growing in the intestine and (ii) the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis. METHODOLOGY/PRINCIPAL FINDINGS: We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma. CONCLUSIONS: The pig model could help with simultaneously studying intestinal and extraintestinal lesion development

    Team climate, intention to leave and turnover among hospital employees: Prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In hospitals, the costs of employee turnover are substantial and intentions to leave among staff may manifest as lowered performance. We examined whether team climate, as indicated by clear and shared goals, participation, task orientation and support for innovation, predicts intention to leave the job and actual turnover among hospital employees.</p> <p>Methods</p> <p>Prospective study with baseline and follow-up surveys (2–4 years apart). The participants were 6,441 (785 men, 5,656 women) hospital employees under the age of 55 at the time of follow-up survey. Logistic regression with generalized estimating equations was used as an analysis method to include both individual and work unit level predictors in the models.</p> <p>Results</p> <p>Among stayers with no intention to leave at baseline, lower self-reported team climate predicted higher likelihood of having intentions to leave at follow-up (odds ratio per 1 standard deviation decrease in team climate was 1.6, 95% confidence interval 1.4–1.8). Lower co-worker assessed team climate at follow-up was also association with such intentions (odds ratio 1.8, 95% confidence interval 1.4–2.4). Among all participants, the likelihood of actually quitting the job was higher for those with poor self-reported team climate at baseline. This association disappeared after adjustment for intention to leave at baseline suggesting that such intentions may explain the greater turnover rate among employees with low team climate.</p> <p>Conclusion</p> <p>Improving team climate may reduce intentions to leave and turnover among hospital employees.</p
    • …
    corecore