66 research outputs found

    Rapid dissection and model-based optimization of inducible enhancers in human cells using a massively parallel reporter assay

    Get PDF
    Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-Ξ² enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.National Human Genome Research Institute (U.S.) (grant R01HG004037)National Science Foundation (U.S.) ((NSF) grant PHY-0957573)National Science Foundation (U.S.) (NSF grant PHY-1022140)Broad Institut

    HMGA1 is a novel downstream nuclear target of the insulin receptor signaling pathway

    Get PDF
    High-mobility group AT-hook 1 (HMGA1) protein is an important nuclear factor that activates gene transcription by binding to AT-rich sequences in the promoter region of DNA. We previously demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR) gene and individuals with defects in HMGA1 have decreased INSR expression and increased susceptibility to type 2 diabetes mellitus. In addition, there is evidence that intracellular regulatory molecules that are employed by the INSR signaling system are involved in post-translational modifications of HMGA1, including protein phosphorylation. It is known that phosphorylation of HMGA1 reduces DNA-binding affinity and transcriptional activation. In the present study, we investigated whether activation of the INSR by insulin affected HMGA1 protein phosphorylation and its regulation of gene transcription. Collectively, our findings indicate that HMGA1 is a novel downstream target of the INSR signaling pathway, thus representing a new critical nuclear mediator of insulin action and function

    A novel role for RIP1 kinase in mediating TNFΞ± production

    Get PDF
    Receptor-interacting protein 1 (RIP1) is a Ser/Thr kinase with both kinase-dependent and kinase-independent roles in death receptor signaling. The kinase activity of RIP1 is required for necroptosis, a caspase-independent pathway of programmed cell death. In some cell types, the inhibition of caspases leads to autocrine production of TNFΞ±, which then activates necroptosis. Here, we describe a novel role for RIP1 kinase in regulating TNFΞ± production after caspase inhibition. Caspase inhibitors activate RIP1 kinase and another protein, EDD, to mediate JNK signaling, which stimulates Sp1-dependent transcription of TNFΞ±. This pathway is independent of nuclear factor ΞΊB and also occurs after Smac mimetic/IAP antagonist treatment or the loss of TNF receptor-associated factor 2 (Traf2). These findings implicate cIAP1/2 and Traf2 as negative regulators of this RIP1 kinase-dependent TNFΞ± production pathway and suggest a novel role for RIP1 kinase in mediating TNFΞ± production under certain conditions

    Human Gene Coexpression Landscape: Confident Network Derived from Tissue Transcriptomic Profiles

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global >omic> scale are not focused on human samples and when they correspond to human very often include heterogeneous datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the estimation of errors in the data is not provided. [Methodology/Principal Findings]: Human genome-wide expression data from a controlled set of normal-healthy tissues is used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve this we describe a new method that combines several statistical and computational strategies: robust normalization and expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over previously published datasets. Further functional analysis of a subset core network, validated by two independent methods, shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression clusters organized in well defined functional constellations. Two major regions in this network correspond to genes involved in nuclear and mitochondrial metabolism and investigations on their functional assignment indicate that more than 60% are house-keeping and essential genes. The network displays new non-described gene associations and it allows the placement in a functional context of some unknown non-assigned genes based on their interactions with known gene families. [Conclusions/Significance]: The identification of stable and reliable human gene to gene coexpression networks is essential to unravel the interactions and functional correlations between human genes at an omic scale. This work contributes to this aim, and we are making available for the scientific community the validated human gene coexpression networks obtained, to allow further analyses on the network or on some specific gene associations. The data are available free online at http://bioinfow.dep.usal.es/coexpression/. Β© 2008 Prieto et al.Funding and grant support was provided by the Ministery of Health, Spanish Government (ISCiii-FIS, MSyC; Project reference PI061153) and by the Ministery of Education, Castilla-Leon Local Government (JCyL; Project reference CSI03A06).Peer Reviewe

    Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    Get PDF
    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-Ξ², other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-Ξ² abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-Ξ². Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-Ξ² plays a central role in this regulatory mechanism

    Loss of Hairless Confers Susceptibility to UVB-Induced Tumorigenesis via Disruption of NF-kappaB Signaling

    Get PDF
    In order to model squamous cell carcinoma development in vivo, researchers have long preferred hairless mouse models such as SKH-1 mice that have traditionally been classified as β€˜wild-type’ mice irrespective of the genetic factors underlying their hairless phenotype. The work presented here shows that mutations in the Hairless (Hr) gene not only result in the hairless phenotype of the SKH-1 and Hrβˆ’/βˆ’ mouse lines but also cause aberrant activation of NFΞΊB and its downstream effectors. We show that in the epidermis, Hr is an early UVB response gene that regulates NFΞΊB activation and thereby controls cellular responses to irradiation. Therefore, when Hr expression is decreased in Hr mutant animals there is a corresponding increase in NFΞΊB activity that is augmented by UVB irradiation. This constitutive activation of NFΞΊB in the Hr mutant epidermis leads to the stimulation a large variety of downstream effectors including the cell cycle regulators cyclin D1 and cyclin E, the anti-apoptosis protein Bcl-2, and the pro-inflammatory protein Cox-2. Therefore, Hr loss results in a state of uncontrolled epidermal proliferation that promotes tumor development, and Hr mutant mice should no longer be considered merely hairless 'wild-type' mice. Instead, Hr is a crucial UVB response gene and its loss creates a permissive environment that potentiates increased tumorigenesis

    Primate TNF Promoters Reveal Markers of Phylogeny and Evolution of Innate Immunity

    Get PDF
    Background. Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry. Methodology/Principal findings. Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages. Conclusions/significance. Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF

    The Role of Response Elements Organization in Transcription Factor Selectivity: The IFN-Ξ² Enhanceosome Example

    Get PDF
    What is the mechanism through which transcription factors (TFs) assemble specifically along the enhancer DNA? The IFN-Ξ² enhanceosome provides a good model system: it is small; its components' crystal structures are available; and there are biochemical and cellular data. In the IFN-Ξ² enhanceosome, there are few protein-protein interactions even though consecutive DNA response elements (REs) overlap. Our molecular dynamics (MD) simulations on different motif combinations from the enhanceosome illustrate that cooperativity is achieved via unique organization of the REs: specific binding of one TF can enhance the binding of another TF to a neighboring RE and restrict others, through overlap of REs; the order of the REs can determine which complexes will form; and the alternation of consensus and non-consensus REs can regulate binding specificity by optimizing the interactions among partners. Our observations offer an explanation of how specificity and cooperativity can be attained despite the limited interactions between neighboring TFs on the enhancer DNA. To date, when addressing selective TF binding, attention has largely focused on RE sequences. Yet, the order of the REs on the DNA and the length of the spacers between them can be a key factor in specific combinatorial assembly of the TFs on the enhancer and thus in function. Our results emphasize cooperativity via RE binding sites organization

    A Cell Permeable Peptide Inhibitor of NFAT Inhibits Macrophage Cytokine Expression and Ameliorates Experimental Colitis

    Get PDF
    Nuclear factor of activated T cells (NFAT) plays a critical role in the development and function of immune and non-immune cells. Although NFAT is a central transcriptional regulator of T cell cytokines, its role in macrophage specific gene expression is less defined. Previous work from our group demonstrated that NFAT regulates Il12b gene expression in macrophages. Here, we further investigate NFAT function in murine macrophages and determined the effects of a cell permeable NFAT inhibitor peptide 11R-VIVIT on experimental colitis in mice. Treatment of bone marrow derived macrophages (BMDMs) with tacrolimus or 11R-VIVIT significantly inhibited LPS and LPS plus IFN-Ξ³ induced IL-12 p40 mRNA and protein expression. IL-12 p70 and IL-23 secretion were also decreased. NFAT nuclear translocation and binding to the IL-12 p40 promoter was reduced by NFAT inhibition. Experiments in BMDMs from IL-10 deficient (Il10βˆ’/βˆ’) mice demonstrate that inhibition of IL-12 expression by 11R-VIVIT was independent of IL-10 expression. To test its therapeutic potential, 11R-VIVIT was administered systemically to Il10βˆ’/βˆ’ mice with piroxicam-induced colitis. 11R-VIVIT treated mice demonstrated significant improvement in colitis compared to mice treated with an inactive peptide. Moreover, decreased spontaneous secretion of IL-12 p40 and TNF in supernatants from colon explant cultures was demonstrated. In summary, NFAT, widely recognized for its role in T cell biology, also regulates important innate inflammatory pathways in macrophages. Selective blocking of NFAT via a cell permeable inhibitory peptide is a promising therapeutic strategy for the treatment of inflammatory bowel diseases
    • …
    corecore