72 research outputs found

    Lyapunov functions and strict stability of Caputo fractional differential equations

    Get PDF
    One of the main properties studied in the qualitative theory of differential equations is the stability of solutions. The stability of fractional order systems is quite recent. There are several approaches in the literature to study stability, one of which is the Lyapunov approach. However, the Lyapunov approach to fractional differential equations causes many difficulties. In this paper a new definition (based on the Caputo fractional Dini derivative) for the derivative of Lyapunov functions to study a nonlinear Caputo fractional differential equation is introduced. Comparison results using this definition and scalar fractional differential equations are presented, and sufficient conditions for strict stability and uniform strict stability are given. Examples are presented to illustrate the theory

    New Implications on Genomic Adaptation Derived from the Helicobacter pylori Genome Comparison

    Get PDF
    BACKGROUND: Helicobacter pylori has a reduced genome and lives in a tough environment for long-term persistence. It evolved with its particular characteristics for biological adaptation. Because several H. pylori genome sequences are available, comparative analysis could help to better understand genomic adaptation of this particular bacterium. PRINCIPAL FINDINGS: We analyzed nine H. pylori genomes with emphasis on microevolution from a different perspective. Inversion was an important factor to shape the genome structure. Illegitimate recombination not only led to genomic inversion but also inverted fragment duplication, both of which contributed to the creation of new genes and gene family, and further, homological recombination contributed to events of inversion. Based on the information of genomic rearrangement, the first genome scaffold structure of H. pylori last common ancestor was produced. The core genome consists of 1186 genes, of which 22 genes could particularly adapt to human stomach niche. H. pylori contains high proportion of pseudogenes whose genesis was principally caused by homopolynucleotide (HPN) mutations. Such mutations are reversible and facilitate the control of gene expression through the change of DNA structure. The reversible mutations and a quasi-panmictic feature could allow such genes or gene fragments frequently transferred within or between populations. Hence, pseudogenes could be a reservoir of adaptation materials and the HPN mutations could be favorable to H. pylori adaptation, leading to HPN accumulation on the genomes, which corresponds to a special feature of Helicobacter species: extremely high HPN composition of genome. CONCLUSION: Our research demonstrated that both genome content and structure of H. pylori have been highly adapted to its particular life style

    Role of Alpha-Synuclein Protein Levels in Mitochondrial Morphology and Cell Survival in Cell Lines

    Get PDF
    α-Synuclein is highly associated with some neurodegeneration and malignancies. Overexpressing wild-type or mutant α-synuclein promotes neuronal death by mitochondrial dysfunction, the underlying mechanisms of which remain poorly defined. It was recently reported that α-synuclein expression could directly lead to mitochondrial fragmentation in vitro and in vivo, which may be due to α-synuclein localization on mitochondria. Here, we applied a double staining method to demonstrate mitochondrial morphogenetic changes in cells overexpressed with α-synuclein. We show that mitochondrial localization of α-synuclein was increased following its overexpression in three distinct cell lines, including HeLa, SH-SY5Y, and PC12 cells, but no alteration in mitochondrial morphology was detected. However, α-synuclein knockdown prevents MPP+-induced mitochondrial fragmentation in SH-SY5Y and PC12 cells. These data suggest that α-synuclein protein levels hardly affect mitochondrial morphology in normal cell lines, but may have some influence on that under certain environmental conditions

    What Lies behind the Wish to Hasten Death? A Systematic Review and Meta-Ethnography from the Perspective of Patients

    Get PDF
    BACKGROUND: There is a need for an in-depth approach to the meaning of the wish to hasten death (WTHD). This study aims to understand the experience of patients with serious or incurable illness who express such a wish. METHODS AND FINDINGS: Systematic review and meta-ethnography of qualitative studies from the patient's perspective. Studies were identified through six databases (ISI, PubMed, PsycINFO, CINAHL, CUIDEN and the Cochrane Register of Controlled Trials), together with citation searches and consultation with experts. Finally, seven studies reporting the experiences of 155 patients were included. The seven-stage Noblit and Hare approach was applied, using reciprocal translation and line-of-argument synthesis. Six main themes emerged giving meaning to the WTHD: WTHD in response to physical/psychological/spiritual suffering, loss of self, fear of dying, the desire to live but not in this way, WTHD as a way of ending suffering, and WTHD as a kind of control over one's life ('having an ace up one's sleeve just in case'). An explanatory model was developed which showed the WTHD to be a reactive phenomenon: a response to multidimensional suffering, rather than only one aspect of the despair that may accompany this suffering. According to this model the factors that lead to the emergence of WTHD are total suffering, loss of self and fear, which together produce an overwhelming emotional distress that generates the WTHD as a way out, i.e. to cease living in this way and to put an end to suffering while maintaining some control over the situation. CONCLUSIONS: The expression of the WTHD in these patients is a response to overwhelming emotional distress and has different meanings, which do not necessarily imply a genuine wish to hasten one's death. These meanings, which have a causal relationship to the phenomenon, should be taken into account when drawing up care plans

    Age of the Association between Helicobacter pylori and Man

    Get PDF
    When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya
    • …
    corecore