78 research outputs found
Sperm design and variation in the New World blackbirds (Icteridae)
Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed
Postcopulatory Sexual Selection Is Associated with Reduced Variation in Sperm Morphology
The evolutionary role of postcopulatory sexual selection in shaping male reproductive traits, including sperm morphology, is well documented in several taxa. However, previous studies have focused almost exclusively on the influence of sperm competition on variation among species. In this study we tested the hypothesis that intraspecific variation in sperm morphology is driven by the level of postcopulatory sexual selection in passerine birds.Using two proxy measures of sperm competition level, (i) relative testes size and (ii) extrapair paternity level, we found strong evidence that intermale variation in sperm morphology is negatively associated with the degree of postcopulatory sexual selection, independently of phylogeny.Our results show that the role of postcopulatory sexual selection in the evolution of sperm morphology extends to an intraspecific level, reducing the variation towards what might be a species-specific 'optimum' sperm phenotype. This finding suggests that while postcopulatory selection is generally directional (e.g., favouring longer sperm) across avian species, it also acts as a stabilising evolutionary force within species under intense selection, resulting in reduced variation in sperm morphology traits. We discuss some potential evolutionary mechanisms for this pattern
Postcopulatory sexual selection
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes
Introduced Mammalian Predators Induce Behavioural Changes in Parental Care in an Endemic New Zealand Bird
The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible
Experimental evolution of sperm competitiveness in a mammal
<p>Abstract</p> <p>Background</p> <p>When females mate with multiple partners, sperm from rival males compete to fertilise the ova. Studies of experimental evolution have proven the selective action of sperm competition on male reproductive traits. However, while reproductive traits may evolve in response to sperm competition, this does not necessarily provide evidence that sperm competitive ability responds to selection. Indeed, a study of <it>Drosophila </it>failed to observe divergence in sperm competitive ability of males in lines selected for enhanced sperm offence and defence.</p> <p>Results</p> <p>Adopting the naturally polygamous house mouse (<it>Mus domesticus</it>) as our vertebrate model, we performed an experimental evolution study and observed genetic divergence in sperm quality; males from the polygamous selection lines produced ejaculates with increased sperm numbers and greater sperm motility compared to males from the monogamous lines. Here, after 12 generations of experimental evolution, we conducted competitive matings between males from lineages evolving under sperm competition and males from lineages subject to relaxed selection. We reduced variation in paternity arising from embryo mortality by genotyping embryos <it>in utero </it>at 14 days gestation. Our microsatellite data revealed a significant paternity bias toward males that evolved under the selective regime of sperm competition.</p> <p>Conclusion</p> <p>We provide evidence that the sperm competitiveness phenotype can respond to selection, and show that improved sperm quality translates to greater competitive fertilisation success in house mice.</p
Male age is associated with extra-pair paternity, but not with extra-pair mating behaviour
Extra-pair paternity is the result of copulation between a female and a male other than her social partner. In socially monogamous birds, old males are most likely to sire extra-pair offspring. The male manipulation and female choice hypotheses predict that age-specific male mating behaviour could explain this old-over-young male advantage. These hypotheses have been difficult to test because copulations and the individuals involved are hard to observe. Here, we studied the mating behaviour and pairing contexts of captive house sparrows, Passer domesticus. Our set-up mimicked the complex social environment experienced by wild house sparrows. We found that middle-aged males, which would be considered old in natural populations, gained most extra-pair paternity. However, both, female solicitation behaviour and subsequent extra-pair matings were not associated with male age. Further, copulations were more likely when solicited by females than when initiated by males (i.e. unsolicited copulations). Male initiated within-pair copulations were more common than male initiated extra-pair copulations. To conclude, our results did not support either hypothesis regarding age-specific male mating behaviour. Instead, female choice, independent of male age, governed copulation success, especially in an extra-pair context. Post-copulatory mechanisms might determine why older males sire more extra-pair offspring
Are acoustical parameters of begging call elements of thin-billed prions related to chick condition?
Chicks of burrowing petrels use begging calls to advertise their hunger levels when parents arrived at the nest. In a previous study, adult thin-billed prions Pachyptila belcheri responded to higher begging call rates of their single chick by regurgitating larger meals. We tested whether acoustic parameters of begging call elements may also be involved in signalling. To describe variation in begging, we determined begging session parameters, namely the duration, number of calls and the mean and maximum rate of calling. We then digitised calls and carried out a semi-automatic extraction of six acoustic parameters of call elements, including mean and maximum acoustic frequency, the length of call elements and the location of the maximum frequency and amplitude within calls. Chicks showed strong individual differences in all parameters. While the session parameters were correlated with body condition and with the meal size the chick received, none of the acoustic parameters were related to body condition and provisioning. A cross-fostering experiment showed the same pattern, as only session parameters changed related to an experimentally altered body condition, while acoustical cues appear to play no role in signalling hunger levels. We suggest that this may be explained by the absence of sibling competition in these birds. As parents do not need to decide which chick to feed, immediate information on condition at the time of adult arrival may not be required
Coevolution of Male and Female Genital Morphology in Waterfowl
Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations
Sperm Length Variation as a Predictor of Extrapair Paternity in Passerine Birds
The rate of extrapair paternity is a commonly used index for the risk of sperm competition in birds, but paternity data exist for only a few percent of the approximately 10400 extant species. As paternity analyses require extensive field sampling and costly lab work, species coverage in this field will probably not improve much in the foreseeable future. Recent findings from passerine birds, which constitute the largest avian order (∼5,900 species), suggest that sperm phenotypes carry a signature of sperm competition. Here we examine how well standardized measures of sperm length variation can predict the rate of extrapair paternity in passerine birds.We collected sperm samples from 55 passerine species in Canada and Europe for which extrapair paternity rates were already available from either the same (n = 24) or a different (n = 31) study population. We measured the total length of individual spermatozoa and found that both the coefficient of between-male variation (CV(bm)) and within-male variation (CV(wm)) in sperm length were strong predictors of the rate of extrapair paternity, explaining as much as 65% and 58%, respectively, of the variation in extrapair paternity among species. However, only the CV(bm) predictor was independent of phylogeny, which implies that it can readily be converted into a currency of extrapair paternity without the need for phylogenetic correction.We propose the CV(bm) index as an alternative measure to extrapair paternity for passerine birds. Given the ease of sperm extraction from male birds in breeding condition, and a modest number of sampled males required for a robust estimate, this new index holds a great potential for mapping the risk of sperm competition across a wide range of passerine birds
- …