27 research outputs found

    Proteinase 3 mRNA expression is induced in monocytes but not in neutrophils of patients with cystic fibrosis

    Get PDF
    AbstractProteinase 3 (PR3), a serine proteinase which can degrade lung tissue, is present in the cystic fibrosis (CF) sputum. In the present study, PR3 protein and mRNA expression was determined in circulating neutrophils and monocytes. CF neutrophils contained similar PR3 concentrations as healthy controls and poorly expressed PR3 mRNA. In contrast, CF monocytes showed significantly higher PR3 concentrations than controls, together with an upregulation of PR3 mRNA expression especially during pulmonary exacerbation. Interestingly, antibiotic treatment fully abrogated PR3 mRNA expression and decreased PR3 protein in monocytes. Our findings highlight a potential role of monocyte-derived PR3 in CF-associated airway inflammation

    Bacteria isolated from lung modulate asthma susceptibility in mice

    No full text
    Asthma is a chronic, non-curable, multifactorial disease with increasing incidence in industrial countries. This study evaluates the direct contribution of lung microbial components in allergic asthma in mice. Germ-Free and Specific-Pathogen-Free mice display similar susceptibilities to House Dust Mice-induced allergic asthma, indicating that the absence of bacteria confers no protection or increased risk to aeroallergens. In early life, allergic asthma changes the pattern of lung microbiota, and lung bacteria reciprocally modulate aeroallergen responsiveness. Primo-colonizing cultivable strains were screened for their immunoregulatory properties following their isolation from neonatal lungs. Intranasal inoculation of lung bacteria influenced the outcome of allergic asthma development: the strain CNCM I 4970 exacerbated some asthma features whereas the pro-Th1 strain CNCM I 4969 had protective effects. Thus, we confirm that appropriate bacterial lung stimuli during early life are critical for susceptibility to allergic asthma in young adults

    Regulation of the Fruit-Specific PEP Carboxylase SlPPC2 Promoter at Early Stages of Tomato Fruit Development

    Get PDF
    The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the β-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5′ SlPPC2 promoter deletions fused to LUC in fruits at the 8th day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5′ UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars

    Traitement antirétroviral (quel rôle pour le pharmacien d officine, quelles attentes de la part des patients)

    No full text
    Depuis la découverte de l'épidémie de VIH-sida au début des années 80, de nombreux progrès ont été faits. L'apparition de traitements comme l'AZT en 1987 et surtout les inhibiteurs de protéases à partir de 1996, ont significativement modifié le pronostic de la maladie qui devient alors chronique. Une politique récente de sortie massive de la réserve hospitalière a eu pour conséquence un changement dans les pratiques officinales du pharmacien. Désormais toutes les molécules antirétrovirales sont disponibles à l'officine et pourtant les patients continuent de prendre leur traitement à l'hôpital. Les objectifs de cette enquête seront donc de comprendre pourquoi les patients ne viennent pas s'approvisionner en ville d'une part, et de déterminer le rôle du pharmacien dans la délivrance des antirétroviraux d'autre part. Elle mettra notamment en évidence l'importance de l'instauration d'une relation de confiance entre le patient et le pharmacien dans l'observance et la réussite du traitementTOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF

    Structure-function studies on human interleukin-6

    No full text
    info:eu-repo/semantics/publishe

    An algorithm to safely manage oral food challenge in an office-based setting for children with multiple food allergies

    No full text
    Background: In France, from 30% to 35% of children suffer from multiple food allergies (MFA). The gold standard to diagnosis a food allergy is the oral food challenge (OFC) which is conducted in a hospital setting due to risk of anaphylaxis. The aim of this study was to evaluate an algorithm to predict OFCs at low risk of anaphylaxis that could safely be performed in an office-based setting. Methods: Children with MFA and at least one open OFC reactive or non-reactive to other allergens were included. The algorithm was based on multiple clinical and biological parameters related to food allergens, and designed mainly to predict “low-risk” OFCs i.e., practicable in an office-based setting. The algorithm was secondarily tested in a validation cohort. Results: Ninety-one children (median age 9 years) were included; 94% had at least one allergic comorbidity with an average of three OFCs per child. Of the 261 OFCs analyzed, most (192/261, 74%) were non-reactive. The algorithm failed to correctly predict 32 OFCs with a potentially detrimental consequence but among these only three children had severe symptoms. One hundred eighty-four of the 212 “low-risk” OFCs, (88%) were correctly predicted with a high positive predictive value (87%) and low negative predictive value (44%). These results were confirmed with a validation cohort giving a specificity of 98% and negative predictive value of 100%. Conclusion: This study suggests that the algorithm we present here can predict “low-risk” OFCs in children with MFA which could be safely conducted in an office-based setting. Our results must be confirmed with an algorithm-based machine-learning approach

    Internal deletions in human interleukin-6: structure-function analysis.

    No full text
    By cDNA mutagenesis, we have constructed internal and C-terminal deletions (delta 21-51, delta 52-97, delta 97-104, delta 127-174, delta 97-184 and delta 134-184) in human interleukin-6 (hIL-6). All those deletion-carrying hIL-6 (delta hIL-6) proteins were then produced in Xenopus laevis oocytes and examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results show that, at least in frog oocytes, the first potential N-glycosylation site (Asn45) is utilized exclusively. The IL-6 conformation of these deletion-carrying proteins has been studied by immunoprecipitation with two kinds of monoclonal antibodies (mAb's): mAb's that show preference towards denatured hIL-6, or conformation-specific mAb's. The binding pattern of these two series of mAb's indicated that the IL-6 conformation has been largely destroyed for four of our delta-proteins. Proteins delta 21-51 and delta 127-174 have kept a part of the IL-6 tertiary structure since they are still recognized by some conformation-specific mAb's. All of these delta hIL-6 proteins were inactive in the IL-6 hybridoma growth factor (HGF) assay and unable to inhibit the HGF activity of the recombinant human wild-type IL-6 (wt hIL-6). Moreover, the oocyte-synthesized delta hIL-6 (delta 21-51, delta 127-174, delta 97-184, delta 134-184) did not bind to the IL-6 receptor. Finally, we have produced two proteins with aa 29-33 or 97-104 substituted by corresponding murine IL-6 (mIL-6) sequences.(ABSTRACT TRUNCATED AT 250 WORDS)Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Involvement of the Arg179 in the active site of human IL-6.

    Get PDF
    Three internal-amino acid deletions of amino acids 171-179 of human interleukin 6 (IL-6) were introduced at the cDNA level. While all deletion proteins were biologically inactive, immunoprecipitations with a set of conformation-specific anti-(IL-6) monoclonal antibodies showed that only mutant delta 177-179 does not present major alterations in folding. This finding, together with the observation that delta 177-179 is not able to compete with IL-6 for binding to the soluble human IL-6 receptor, suggested that some or all of these three residues participate to the composition of the receptor-binding site of human IL-6. A large number of single-amino-acid-substitution mutants were generated in residues 177, 178 and 179. Their detailed analysis revealed that Arg179 is crucial for activity in mouse cells, because all amino acid substitutions in this position cause a dramatic drop of biological activity on murine hybridoma cells without affecting the overall protein folding. The only substitution which preserved some residual activity was the conservative Arg to Lys change. This demonstrates the absolute requirement for a positive charge in position 179 for the interaction of human IL-6 with its receptor.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Impact of transposable elements on the organization and function of allopolyploid genomes

    No full text
    Transposable elements (TEs) represent an important fraction of plant genomes and are likely to play a pivotal role in fuelling genome reorganization and functional changes following allopolyploidization. Various processes associated with allopolyploidy (i.e. genetic redundancy, bottlenecks during the formation of allopolyploids or genome shock following genome merging) may allow accumulation of TE insertions. Our objective in carrying out a survey of the literature and a comparative analysis across different allopolyploid systems is to shed light on the structural, epigenetic and functional modifications driven by TEs during allopolyploidization and subsequent diploidization. The available evidence indicates that TE proliferation in the short or the long term after allopolyploidization may be restricted to a few TEs, in specific polyploid systems. By contrast, data indicate major structural changes in the TE genome fraction immediately after allopolyploidization, mainly through losses of TE sequences as a result of recombination. Emerging evidence also suggests that TEs are targeted by substantial epigenetic changes, which may impact gene expression and genome stability. Furthermore, TEs may directly or indirectly support the evolution of new functionalities in allopolyploids during diploidization. All data stress allopolyploidization as a shock associated with drastic genome reorganization. Mechanisms controlling TEs during allopolyploidization as well as their impact on diploidization are discussed
    corecore