141 research outputs found

    Approximate Minimum Diameter

    Full text link
    We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a contineus region (\impre model) or a finite set of points (\indec model). Given a set of inexact points in one of \impre or \indec models, we wish to provide a lower-bound on the diameter of the real points. In the first part of the paper, we focus on \indec model. We present an O(21ϵdϵ2dn3)O(2^{\frac{1}{\epsilon^d}} \cdot \epsilon^{-2d} \cdot n^3 ) time approximation algorithm of factor (1+ϵ)(1+\epsilon) for finding minimum diameter of a set of points in dd dimensions. This improves the previously proposed algorithms for this problem substantially. Next, we consider the problem in \impre model. In dd-dimensional space, we propose a polynomial time d\sqrt{d}-approximation algorithm. In addition, for d=2d=2, we define the notion of α\alpha-separability and use our algorithm for \indec model to obtain (1+ϵ)(1+\epsilon)-approximation algorithm for a set of α\alpha-separable regions in time O(21ϵ2.n3ϵ10.sin(α/2)3)O(2^{\frac{1}{\epsilon^2}}\allowbreak . \frac{n^3}{\epsilon^{10} .\sin(\alpha/2)^3} )

    Quality assessment of cellular therapies: the emerging role of molecular assays

    Get PDF
    Cellular therapies are becoming increasingly important in treating cancer, hematologic malignancies, autoimmune disorders, and damaged tissue. These therapies are becoming more effective and are being used more frequently, but they are also becoming more complex. As a result, quality testing is becoming an increasingly important part of cellular therapy. Cellular therapies should be tested at several points during their production. The starting material, intermediate products and the final product are usually analyzed. Products are evaluated at critical steps in the manufacturing process and at the end of production prior to the release of the product for clinical use. In addition, the donor of the starting biologic material is usually evaluated. The testing of cellular therapies for stability, consistency, comparability and potency is especially challenging. We and others have found that global gene and microRNA expression analysis is useful for comparability testing and will likely be useful for potency, stability and consistency testing. Several examples of the use of gene expression analysis for assessing cellular therapies are presented

    MSH2/MSH6 Complex Promotes Error-Free Repair of AID-Induced dU:G Mispairs as well as Error-Prone Hypermutation of A:T Sites

    Get PDF
    Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2−/−Msh6−/− mouse has for the first time allowed us to examine the impact of the complete loss of MutSα on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2−/−Msh6−/− and Msh2−/−Msh6−/−Msh3−/− mice are indistinguishable from Msh2−/− mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSα heterodimers that maintain genomic stability. The similar defects on switching in Msh2−/−, Msh2−/−Msh6−/− and Msh2−/−Msh6−/−Msh3−/− mice confirm that MutSα but not MutSβ plays an important role in CSR. Analysis of SHM in Msh2−/−Msh6−/− mice not only confirmed the error-prone role of MutSα in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSα when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSα at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM

    Histone H2A and H2B Are Monoubiquitinated at AID-Targeted Loci

    Get PDF
    Background: Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined. Methodology/Principal Findings: Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt\u27s B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed V(H) and S gamma 3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci. Conclusions/Significance: Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation

    Active nuclear import and cytoplasmic retention of activation-induced deaminase

    Full text link
    The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.This work was supported by the Canadian Institutes of Health Research (MOP 84543) and a Canada Research Chair (to J.M.D.). A.O. was supported by a fellowship from the Canadian Institutes of Health Research Cancer Training Program at the IRCM. V.A.C. was supported in part by a Michel Saucier fellowship from the Louis-Pasteur Canadian Fund through the University of Montreal

    Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    Get PDF
    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore