50 research outputs found
Keyed Non-Parametric Hypothesis Tests
The recent popularity of machine learning calls for a deeper understanding of
AI security. Amongst the numerous AI threats published so far, poisoning
attacks currently attract considerable attention. In a poisoning attack the
opponent partially tampers the dataset used for learning to mislead the
classifier during the testing phase.
This paper proposes a new protection strategy against poisoning attacks. The
technique relies on a new primitive called keyed non-parametric hypothesis
tests allowing to evaluate under adversarial conditions the training input's
conformance with a previously learned distribution . To do so we
use a secret key unknown to the opponent.
Keyed non-parametric hypothesis tests differs from classical tests in that
the secrecy of prevents the opponent from misleading the keyed test
into concluding that a (significantly) tampered dataset belongs to
.Comment: Paper published in NSS 201
Can compact optimisation algorithms be structurally biased?
In the field of stochastic optimisation, the so-called structural bias constitutes an undesired behaviour of an algorithm that is unable to explore the search space to a uniform extent. In this paper, we investigate whether algorithms from a subclass of estimation of distribution algorithms, the compact algorithms, exhibit structural bias. Our approach, justified in our earlier publications, is based on conducting experiments on a test function whose values are uniformly distributed in its domain. For the experiment, 81 combinations of compact algorithms and strategies of dealing with infeasible solutions have been selected as test cases. We have applied two approaches for determining the presence and severity of structural bias, namely an (existing) visual and an (updated) statistical (Anderson-Darling) test. Our results suggest that compact algorithms are more immune to structural bias than their counterparts maintaining explicit populations. Both tests indicate that strong structural bias is found only in the cBFO algorithm, regardless of the choice of strategy of dealing with infeasible solutions, and cPSO with mirror strategy. For other test cases, statistical and visual tests disagree on some cases classified as having mild or strong structural bias: the former one tends to make harsher decisions, thus needing further investigation
Effect of duration of postherpetic neuralgia on efficacy analyses in a multicenter, randomized, controlled study of NGX-4010, an 8% capsaicin patch evaluated for the treatment of postherpetic neuralgia
<p>Abstract</p> <p>Background</p> <p>Postherpetic neuralgia (PHN) is a painful and difficult to treat complication of acute herpes zoster. Current treatment options provide only partial relief and are often limited by poor tolerability. We evaluated the safety and efficacy of a single 60-minute application of NGX-4010, an 8% capsaicin patch, in patients with PHN.</p> <p>Methods</p> <p>This multicenter, double-blind, controlled study randomized 155 patients 2:1 to receive either NGX-4010 or a 0.04% capsaicin control patch. Patients were at least 18 years old with PHN for at least 3 months, and an average Numeric Pain Rating Scale (NPRS) score of 3 to 9. The primary efficacy endpoint was the percentage change in NPRS score from baseline to weeks 2-8.</p> <p>Results</p> <p>The mean percent reduction in "average pain for the past 24 hours" NPRS scores from baseline to weeks 2-8 was greater in the NGX-4010 group (36.5%) compared with control (29.9%) although the difference was not significant (p = 0.296). PGIC analysis demonstrated that more NGX-4010 recipients considered themselves improved (much, or very much) compared with control at weeks 8 and 12, but the differences did not reach statistical significance. Post hoc analyses of patients with PHN for at least 6 months showed significantly greater reductions in "average pain for the past 24 hours" NPRS scores from baseline to weeks 2-8 in NGX-4010 patients compared to controls (37.6% versus 23.4%; p = 0.0291). PGIC analysis in this subgroup demonstrated that significantly more NGX-4010 recipients considered themselves much or very much improved compared with control at week 12 (40% versus 20%; p = 0.0403;).</p> <p>Conclusions</p> <p>Although treatment appeared to be safe and well tolerated, a single 60-minute application of NGX-4010 failed to show efficacy in this study which included patients with PHN for less than 6 months. Large reductions in pain observed among control patients with pain for less than 6 months may have been due to spontaneous resolution of PHN, may have confounded the results of the prespecified analyses, and should be taken into account when designing PHN studies.</p> <p>Trial Registration</p> <p>NCT00068081</p
Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature
In natural systems plants face a plethora of antagonists and thus have evolved multiple defence strategies. Lima bean (Phaseolus lunatus L.) is a model plant for studies of inducible indirect anti-herbivore defences including the production of volatile organic compounds (VOCs) and extrafloral nectar (EFN). In contrast, studies on direct chemical defence mechanisms as crucial components of lima beans' defence syndrome under natural conditions are nonexistent. In this study, we focus on the cyanogenic potential (HCNp; concentration of cyanogenic glycosides) as a crucial parameter determining lima beans' cyanogenesis, i.e. the release of toxic hydrogen cyanide from preformed precursors. Quantitative variability of cyanogenesis in a natural population of wild lima bean in Mexico was significantly correlated with missing leaf area. Since existing correlations do not by necessity mean causal associations, the function of cyanogenesis as efficient plant defence was subsequently analysed in feeding trials. We used natural chrysomelid herbivores and clonal lima beans with known cyanogenic features produced from field-grown mother plants. We show that in addition to extensively investigated indirect defences, cyanogenesis has to be considered as an important direct defensive trait affecting lima beans' overall defence in nature. Our results indicate the general importance of analysing ‘multiple defence syndromes’ rather than single defence mechanisms in future functional analyses of plant defences
Combining Independent, Weighted P-Values: Achieving Computational Stability by a Systematic Expansion with Controllable Accuracy
Given the expanding availability of scientific data and tools to analyze them, combining different assessments of the same piece of information has become increasingly important for social, biological, and even physical sciences. This task demands, to begin with, a method-independent standard, such as the -value, that can be used to assess the reliability of a piece of information. Good's formula and Fisher's method combine independent -values with respectively unequal and equal weights. Both approaches may be regarded as limiting instances of a general case of combining -values from groups; -values within each group are weighted equally, while weight varies by group. When some of the weights become nearly degenerate, as cautioned by Good, numeric instability occurs in computation of the combined -values. We deal explicitly with this difficulty by deriving a controlled expansion, in powers of differences in inverse weights, that provides both accurate statistics and stable numerics. We illustrate the utility of this systematic approach with a few examples. In addition, we also provide here an alternative derivation for the probability distribution function of the general case and show how the analytic formula obtained reduces to both Good's and Fisher's methods as special cases. A C++ program, which computes the combined -values with equal numerical stability regardless of whether weights are (nearly) degenerate or not, is available for download at our group website http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/CoinedPValues.html
The Effects of Arbuscular Mycorrhizal Fungi on Direct and Indirect Defense Metabolites of Plantago lanceolata L.
Arbuscular mycorrhizal fungi can strongly influence the metabolism of their host plant, but their effect on plant defense mechanisms has not yet been thoroughly investigated. We studied how the principal direct defenses (iridoid glycosides) and indirect defenses (volatile organic compounds) of Plantago lanceolata L. are affected by insect herbivory and mechanical wounding. Volatile compounds were collected and quantified from mycorrhizal and non-mycorrhizal P. lanceolata plants that underwent three different treatments: 1) insect herbivory, 2) mechanical wounding, or 3) no damage. The iridoids aucubin and catalpol were extracted and quantified from the same plants. Emission of terpenoid volatiles was significantly higher after insect herbivory than after the other treatments. However, herbivore-damaged mycorrhizal plants emitted lower amounts of sesquiterpenes, but not monoterpenes, than herbivore-damaged non-mycorrhizal plants. In contrast, mycorrhizal infection increased the emission of the green leaf volatile (Z)-3-hexenyl acetate in untreated control plants, making it comparable to emission from mechanically wounded or herbivore-damaged plants whether or not they had mycorrhizal associates. Neither mycorrhization nor treatment had any influence on the levels of iridoid glycosides. Thus, mycorrhizal infection did not have any effect on the levels of direct defense compounds measured in P. lanceolata. However, the large decline in herbivore-induced sesquiterpene emission may have important implications for the indirect defense potential of this species
Revolutionizing Clinical Microbiology Laboratory Organization in Hospitals with In Situ Point-of-Care
BACKGROUND: Clinical microbiology may direct decisions regarding hospitalization, isolation and anti-infective therapy, but it is not effective at the time of early care. Point-of-care (POC) tests have been developed for this purpose. METHODS AND FINDINGS: One pilot POC-lab was located close to the core laboratory and emergency ward to test the proof of concept. A second POC-lab was located inside the emergency ward of a distant hospital without a microbiology laboratory. Twenty-three molecular and immuno-detection tests, which were technically undemanding, were progressively implemented, with results obtained in less than four hours. From 2008 to 2010, 51,179 tests yielded 6,244 diagnoses. The second POC-lab detected contagious pathogens in 982 patients who benefited from targeted isolation measures, including those undertaken during the influenza outbreak. POC tests prevented unnecessary treatment of patients with non-streptococcal tonsillitis (n = 1,844) and pregnant women negative for Streptococcus agalactiae carriage (n = 763). The cerebrospinal fluid culture remained sterile in 50% of the 49 patients with bacterial meningitis, therefore antibiotic treatment was guided by the molecular tests performed in the POC-labs. With regard to enterovirus meningitis, the mean length-of-stay of infected patients over 15 years old significantly decreased from 2008 to 2010 compared with 2005 when the POC was not in place (1.43±1.09 versus 2.91±2.31 days; p = 0.0009). Altogether, patients who received POC tests were immediately discharged nearly thrice as often as patients who underwent a conventional diagnostic procedure. CONCLUSIONS: The on-site POC-lab met physicians' needs and influenced the management of 8% of the patients that presented to emergency wards. This strategy might represent a major evolution of decision-making regarding the management of infectious diseases and patient care
Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study
BACKGROUND: The time required for radiographic union following femoral fracture increases with age in both humans and rats for unknown reasons. Since abnormalities in fracture innervation will slow skeletal healing, we explored whether abnormal mRNA expression of genes related to nerve cell activity in the older rats was associated with the slowing of skeletal repair. METHODS: Simple, transverse, mid-shaft, femoral fractures with intramedullary rod fixation were induced in anaesthetized female Sprague-Dawley rats at 6, 26, and 52 weeks of age. At 0, 0.4, 1, 2, 4, and 6 weeks after fracture, a bony segment, one-third the length of the femur, centered on the fracture site, including the external callus, cortical bone, and marrow elements, was harvested. cRNA was prepared and hybridized to 54 Affymetrix U34A microarrays (3/age/time point). RESULTS: The mRNA levels of 62 genes related to neural function were affected by fracture. Of the total, 38 genes were altered by fracture to a similar extent at the three ages. In contrast, eight neural genes showed prolonged down-regulation in the older rats compared to the more rapid return to pre-fracture levels in younger rats. Seven genes were up-regulated by fracture more in the younger rats than in the older rats, while nine genes were up-regulated more in the older rats than in the younger. CONCLUSIONS: mRNA of 24 nerve-related genes responded differently to fracture in older rats compared to young rats. This differential expression may reflect altered cell function at the fracture site that may be causally related to the slowing of fracture healing with age or may be an effect of the delayed healing
Optimization of insect cell based protein production processes - online monitoring, expression systems, scale-up
Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale-up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes
Exploring soluble and colloidally transported trace elements in stalagmites:the strontium-yttrium connection
While seasonality in speleothem trace element signatures is well-documented, the parameters that control the emergence of laminations vary between elements and tend to be multi-factorial. Here, we examine a series of active and fossil stalagmites from Asturias, Spain, with a particular focus on strontium and yttrium co-variations and fluorescent laminations. Coupled confocal fluorescence scanning light microscopy (layer counting) and time scales derived from accelerated mass spectrometry (F14C) in active stalagmites confirm that fluorescent banding is annual. This banding is coincident with Y peaks and Sr troughs, which are among the most robust trace element markers of seasonality. Strontium concentrations (in particular, the strontium partition coefficient, DSr) are positively correlated with stalagmite growth rate and are likely controlled by solution supersaturation, which is in turn controlled by seasonal variations in cave ventilation. DSr can be estimated after correcting for prior calcite precipitation using coeval Mg/Ca ratios, and is consistent with both empirical and experimental values. Meanwhile, yttrium is a proxy for colloidal organic input, and its concentration in stalagmites is likely controlled by a combination of Y drip water flux, surface retention time (i.e., how long a drip and its associated organic matter are in contact with the stalagmite surface), and dilation within the matrix (hereafter referred to as “dilation”). Persistent Sr-Y anti-correlation can be explained as an interplay between the individual controls on each element, and a breakdown in this relationship may be indicative of past changes in cave ventilation and/or drip hydrology.Publisher PDFPeer reviewe