764 research outputs found

    Global entrainment of transcriptional systems to periodic inputs

    Get PDF
    This paper addresses the problem of giving conditions for transcriptional systems to be globally entrained to external periodic inputs. By using contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific case of some models of transcriptional systems. The basic mathematical results needed from contraction theory are proved in the paper, making it self-contained

    Anomalous Dimensions of Non-Chiral Operators from AdS/CFT

    Full text link
    Non-chiral operators with positive anomalous dimensions can have interesting applications to supersymmetric model building. Motivated by this, we develop a new method for obtaining the anomalous dimensions of non-chiral double-trace operators in N=1 superconformal field theories (SCFTs) with weakly-coupled AdS duals. Via the Hamiltonian formulation of AdS/CFT, we show how to directly compute the anomalous dimension as a bound state energy in the gravity dual. This simplifies previous approaches based on the four-point function and the OPE. We apply our method to a class of effective AdS5 supergravity models, and we find that the binding energy can have either sign. If such models can be UV completed, they will provide the first calculable examples of SCFTs with positive anomalous dimensions.Comment: 38 pages, 2 figures, refs adde

    Bisexual women's understandings of social marginalisation: 'The heterosexuals don't understand US but nor do the lesbians'

    Get PDF
    Drawing on interviews with 20 self-identified bisexual women, this paper contributes to the limited psychological literature on bisexual women by exploring their experiences of social marginalisation. These (mainly white and middle class) British bisexual women reported that they did not feel at home in either lesbian or lesbian, gay, bisexual and transgender communities, nor in the wider (heteronormative) society. They identified a number of understandings - bisexuality as a temporary phase on the path to a fully realised lesbian or heterosexual identity and bisexuals as immature, confused, greedy, untrustworthy, highly sexual and incapable of monogamy - which they reported as arising from lesbian, gay, bisexual and transgender communities and the wider society. The women refuted these accounts which they stated did not reflect their experiences of bisexual identity and which positioned bisexuality as invisible and invalid. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Engineering supported membranes for cell biology

    Get PDF
    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology

    Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development

    Get PDF
    Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells

    Temperature, recreational fishing and diapause egg connections : dispersal of spiny water fleas (Bythotrephes longimanus)

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Biological Invasions 13 (2011): 2513-2531, doi:10.1007/s10530-011-0078-8.The spiny water flea (Bythotrephes longimanus) is spreading from Great Lakes coastal waters into northern inland lakes within a northern temperature-defined latitudinal band. Colonization of Great Lakes coastal embayments is assisted by winds and seiche surges, yet rapid inland expansion across the northern states comes through an overland process. The lack of invasions at Isle Royale National Park contrasts with rapid expansion on the nearby Keweenaw Peninsula. Both regions have comparable geology, lake density, and fauna, but differ in recreational fishing boat access, visitation, and containment measures. Tail spines protect Bythotrephes against young of the year, but not larger fish, yet the unusual thick-shelled diapausing eggs can pass through fish guts in viable condition. Sediment traps illustrate how fish spread diapausing eggs across lakes in fecal pellets. Trillions of diapausing eggs are produced per year in Lake Michigan and billions per year in Lake Michigamme, a large inland lake. Dispersal by recreational fishing is linked to use of baitfish, diapausing eggs defecated into live wells and bait buckets, and Bythothephes snagged on fishing line, anchor ropes, and minnow seines. Relatively simple measures, such as on-site rinsing of live wells, restricting transfer of certain baitfish species, or holding baitfish for 24 h (defecation period), should greatly reduce dispersal.Study of Lakes Superior and Michigan was funded from NSF OCE-9726680 and OCE-9712872 to W.C.K., OCE-9712889 to J. Churchill. Geographic survey sampling and Park studies in the national parks during 2008-2010 were funded by a grant from the National Park Service Natural Resource Preservation Program GLNF CESU Task Agreement No. J6067080012

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL
    corecore