823 research outputs found

    An Assessment of the Model of Concentration Addition for Predicting the Estrogenic Activity of Chemical Mixtures in Wastewater Treatment Works Effluents

    Get PDF
    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals

    Ultrasonic Monitoring of Reaction Bonding Silicon Nitride

    Get PDF
    A method is discussed to use ultrasonic techniques to monitor the reaction bonding of silicon nitride. Reaction bonding takes place in a nitrogen atmosphere heated up to 1390°C. As with many sensors used in hostile environments, it is difficult to design the ultrasonic sensor in a way that provides optimal clarity of the signal. The sensing system has to be designed within physical limitations on access to the furnace and it has to satisfy considerations on the design of a cooling system for the ultrasonic transducer. These limiting factors have been overcome so that ultrasonic signals have been obtained during processing, albeit with a significant noise level. Signal processing techniques have been developed which make it possible to obtain information on changes in phase velocity and attenuation during reaction bonding. The signal processing techniques have the potential to be implemented in real time for the monitoring of the progress of the reaction. This information can then be used for process control feedback.</p

    Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects

    Get PDF
    PublishedResearch Support, Non-U.S. Gov'tBACKGROUND: Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. OBJECTIVES: We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). METHODS: Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17 alpha-ethinyl-estradiol (EE2)], and to EE2 alone. RESULTS: In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. CONCLUSION: These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures.This work was funded by the Environment Agency to C.R.T. (project no. SC040078). T.N. was supported by a Fundação para a Ciência ea Tecnologia (FCT) fellowship (BPD/18192/04)

    Dynamics of trimming the content of face representations for categorization in the brain

    Get PDF
    To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) Over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) Concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g. the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened eyes in 'fear'; the detailed mouth in 'happy'). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300

    Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb

    Get PDF
    We report, for the first time to the best of our knowledge, spectral phase characterization and line-by-line pulse shaping of an optical frequency comb generated by nonlinear wave mixing in a microring resonator. Through programmable pulse shaping the comb is compressed into a train of near-transform-limited pulses of \approx 300 fs duration (intensity full width half maximum) at 595 GHz repetition rate. An additional, simple example of optical arbitrary waveform generation is presented. The ability to characterize and then stably compress the frequency comb provides new data on the stability of the spectral phase and suggests that random relative frequency shifts due to uncorrelated variations of frequency dependent phase are at or below the 100 microHertz level.Comment: 18 pages, 4 figure

    The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies

    Get PDF
    The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic

    Recurrent Connections Aid Occluded Object Recognition by Discounting Occluders

    Full text link
    Recurrent connections in the visual cortex are thought to aid object recognition when part of the stimulus is occluded. Here we investigate if and how recurrent connections in artificial neural networks similarly aid object recognition. We systematically test and compare architectures comprised of bottom-up (B), lateral (L) and top-down (T) connections. Performance is evaluated on a novel stereoscopic occluded object recognition dataset. The task consists of recognizing one target digit occluded by multiple occluder digits in a pseudo-3D environment. We find that recurrent models perform significantly better than their feedforward counterparts, which were matched in parametric complexity. Furthermore, we analyze how the network's representation of the stimuli evolves over time due to recurrent connections. We show that the recurrent connections tend to move the network's representation of an occluded digit towards its un-occluded version. Our results suggest that both the brain and artificial neural networks can exploit recurrent connectivity to aid occluded object recognition.Comment: 13 pages, 5 figures, accepted at the 28th International Conference on Artificial Neural Networks, published in Springer Lecture Notes in Computer Science vol 1172

    Biochemical comparison of two Hypostomus populations (Siluriformes, Loricariidae) from the Atlântico Stream of the upper Paraná River basin, Brazil

    Get PDF
    Two syntopic morphotypes of the genus Hypostomus - H. nigromaculatus and H. cf. nigromaculatus (Atlântico Stream, Paraná State) - were compared through the allozyme electrophoresis technique. Twelve enzymatic systems (AAT, ADH, EST, GCDH, G3PDH, GPI, IDH, LDH, MDH, ME, PGM and SOD) were analyzed, attributing the score of 20 loci, with a total of 30 alleles. Six loci were diagnostic (Aat-2, Gcdh-1, Gpi-A, Idh-1, Ldh-A and Mdh-A), indicating the presence of interjacent reproductive isolation. The occurrence of few polymorphic loci acknowledge two morphotypes, with heterozygosity values He = 0.0291 for H. nigromaculatus and He = 0.0346 for H. cf. nigromaculatus. FIS statistics demonstrated fixation of the alleles in the two morphotypes. Genetic identity (I) and distance (D) of Nei (1978) values were I = 0.6515 and D = 0.4285. The data indicate that these two morphotypes from the Atlântico Stream belong to different species

    Parametric study of EEG sensitivity to phase noise during face processing

    Get PDF
    &lt;b&gt;Background: &lt;/b&gt; The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. &lt;b&gt;Results: &lt;/b&gt; Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces. &lt;b&gt;Conclusion: &lt;/b&gt; Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses

    Allozyme differentiation of two populations of the genus Neoplecostomus Eigenmann & Eigenmann, 1888 (Teleostei, Loricariidae) from the upper Paraná River basin, Brazil

    Get PDF
    Allozyme electrophoresis was used to examine 12 enzymatic systems in two populations of the genus Neoplecostomus from the Paraná River basin. Samples of Neoplecostomus sp. 1 were collected in Paraitinguinha stream of the Tietê River basin, in the municipality of Salesópolis, São Paulo State, and those of Neoplecostomus sp. 2 from São Domingos stream of the Rio Grande River basin, in the municipality of Muzambinho, Minas Gerais State. The genetic variability of the two populations was estimated by Nei’s expected heterozygosity and was considered lower than average for populations of freshwater fish. The proportion of polymorphic loci was low (only 5.26% for the locus Idh). The low frequency of heterozygosity for both populations revealed a high fixation of alleles for each locus. Homozygote excess was observed in both populations. The values of Nei’s genetic identity and the presence of loci with different allele frequencies in both populations may imply that the two populations belong to different species. The genetic variability between populations was compared to other data for loricariids
    corecore