94 research outputs found

    The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes

    Get PDF
    The global carbon cycle is highly sensitive to climate-driven fluctuations of precipitation, especially in the Southern Hemisphere. This was clearly manifested by a 20% increase of the global terrestrial C sink in 2011 during the strongest sustained La Niña since 1917. However, inconsistencies exist between El Niño/La Niña (ENSO) cycles and precipitation in the historical record; for example, significant ENSO-precipitation correlations were present in only 31% of the last 100 years, and often absent in wet years. To resolve these inconsistencies, we used an advanced temporal scaling method for identifying interactions amongst three key climate modes (El Niño, the Indian Ocean dipole, and the southern annular mode). When these climate modes synchronised (1999-2012), drought and extreme precipitation were observed across Australia. The interaction amongst these climate modes, more than the effect of any single mode, was associated with large fluctuations in precipitation and productivity. The long-term exposure of vegetation to this arid environment has favoured a resilient flora capable of large fluctuations in photosynthetic productivity and explains why Australia was a major contributor not only to the 2011 global C sink anomaly but also to global reductions in photosynthetic C uptake during the previous decade of drought

    Common Issues in Verification of Climate Forecasts and Projections

    Get PDF
    With increased interest in climate forecasts and projections, it is important to understand more about their sources and levels of skill. A starting point here is to describe the nature of the skill associated with forecasts and projections. Climate forecasts and projections typically both include time varying forcing of the climate, but only forecasts have initial conditions set close to the observed climate state. Climate forecasts therefore derive skill from both initial conditions and from forcing. The character of the initial condition skill and forcing skill is different. Skill from initial conditions results in a narrowing of expectations relative to a climatological distribution and points toward a more favoured part of the distribution. Forcing skill could result from a shift in the preferred parts of the climatological distribution in response to forcing, or it could result from a shift in the entire distribution, or both. Assessments of forcing skill require time averages of the target variable that are long enough so that the contributions from internal variations are small compared to the forced response. The assessment of skill of climate forecasts and projections is inherently partial because of the small number of repeated trials possible on typical climate time scales but is nonetheless the only direct measure of their performance

    Natural hazards in Australia: heatwaves

    Get PDF
    As part of a special issue on natural hazards, this paper reviews the current state of scientific knowledge of Australian heatwaves. Over recent years, progress has been made in understanding both the causes of and changes to heatwaves. Relationships between atmospheric heatwaves and large-scale and synoptic variability have been identified, with increasing trends in heatwave intensity, frequency and duration projected to continue throughout the 21st century. However, more research is required to further our understanding of the dynamical interactions of atmospheric heatwaves, particularly with the land surface. Research into marine heatwaves is still in its infancy, with little known about driving mechanisms, and observed and future changes. In order to address these knowledge gaps, recommendations include: focusing on a comprehensive assessment of atmospheric heatwave dynamics; understanding links with droughts; working towards a unified measurement framework; and investigating observed and future trends in marine heatwaves. Such work requires comprehensive and long-term collaboration activities. However, benefits will extend to the international community, thus addressing global grand challenges surrounding these extreme events
    corecore