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Abstract  32 

 33 
As part of a special issue on natural hazards, this paper reviews the current state of 34 

scientific knowledge of Australian heatwaves. Over recent years, progress has been 35 

made in understanding both the causes of and changes to heatwaves.  Relationships 36 

between atmospheric heatwaves and large-scale and synoptic variability have been 37 

identified, with increasing observed trends in heatwave intensity, frequency and 38 

duration projected to continue throughout the 21st century. However, more research is 39 

required to further our understanding of the dynamical interactions of atmospheric 40 

heatwaves, particularly with the land surface. Research into marine heatwaves is still 41 

in its infancy with little known about driving mechanisms and observed and future 42 

changes. In order to address knowledge gaps, recommendations of this paper include 43 

focusing on a comprehensive assessment of atmospheric heatwave dynamics; 44 

understanding links with droughts; working towards a unified measurement 45 

framework; and investigating observed and future trends in marine heatwaves. Such 46 

work requires comprehensive and long-term collaboration across many sectors. 47 

However, benefits will extend to the international community, thus addressing global 48 

grand challenges surrounding these remarkable extreme events.  49 



 

 

1. Introduction 50 

Heatwaves occur in the atmosphere and ocean and are natural hazards that have 51 

substantial impacts on human health, the economy and the environment. They are 52 

Australia’s most deadly natural hazard, causing 55% of all natural disaster related 53 

deaths (Coates et al. 2014) and burden the Australian workforce by about US$6.2 54 

billion every year (Zander et al. 2015). The 2009 Victorian heatwave preceding the 55 

devastating Black Saturday bushfires killed over 370 people (Alexander and Tebaldi 56 

2012) with insured loses of US$1.3 billion (Munich Re 2009). Heatwaves are also a 57 

key influence of bushfires, however the causal link between extreme temperatures and 58 

bushfires are the subject of a separate companion paper in this special issue (Sharples 59 

et al. 2015, this issue).  60 

Heatwaves impact the natural environment; temperatures above 42 °C in 2002 killed 61 

over 3500 flying foxes in New South Wales (NSW) (Welbergen et al. 2008) and the 62 

2011 Western Australia marine heatwave (Pearce and Feng 2013) had substantial 63 

impacts on marine biodiversity patterns (Wernberg et al. 2013). Extreme heat events 64 

can also impact the agriculture and aquaculture industries, respectively harming grain 65 

harvest yields such as wheat (Barlow et al. 2013) and reducing livestock in salmon 66 

farming industries.  67 

Despite their importance, research into atmospheric heatwaves in Australia is generally 68 

lagging behind the global effort. Recent studies over Europe have demonstrated how 69 

the land interacts with synoptic systems (e.g. Fischer et al. 2012; Quesada et al. 2012), 70 

thus an important influence on heatwave variability. Moreover, several studies have 71 

indicated that anthropogenic forcing has contributed to specific European events (e.g. 72 

Stott et al. 2004) while others indicate increases in the frequency of future heatwaves 73 



 

 

under enhanced greenhouse conditions (Orlowsky and Seneviratne 2012). However, 74 

there lacks a unified approach in understanding and characterizing atmospheric 75 

heatwaves in Australia, despite an improved understanding of the relationship between 76 

heatwaves and large-scale modes of climate variability (Parker et al. 2014a; Perkins et 77 

al. 2015), their dominating synoptic patterns (Pezza et al. 2012) and increases in 78 

heatwave frequency since the 1950s (Indian Ocean Climate Initiative 2012; Perkins and 79 

Alexander 2013). In the case of marine heatwaves, less is understood. Only a handful 80 

of studies have focussed on the dynamics and impacts of specific events (Oliver et al. 81 

2014a; Benthuysen et al. 2014), with a measurement framework only recently proposed 82 

(Hobday et al. 2015). 83 

 84 
This paper reviews the scientific literature on the measurement, causes and observed 85 

trends and future projected changes of both atmospheric and marine heatwaves across 86 

Australia, forming part of a special issue on changes in Australian natural hazards. 87 

While it is recognized that atmospheric heatwaves also occur during cooler seasons, the 88 

focus of this paper is limited to austral summer heatwaves when the scale of impacts 89 

are generally larger. This paper concludes with principal findings and provides key 90 

recommendations on future research priorities.  91 

2.  Understanding heatwaves  92 

2.1 Measuring atmospheric heatwaves 93 

Atmospheric heatwaves are classified as prolonged periods of excessive heat (Perkins 94 

and Alexander 2013), although no universal definition currently exists.  Heatwaves can 95 

be measured using different characteristics such as intensity, frequency, duration, 96 

timing and spatial extent, and can be calculated using daily maximum, minimum, or 97 



 

 

average temperature (e.g. Furrer et al. 2010; Fischer and Schär 2010; Nairn and Fawcett 98 

2013; Russo et al. 2014). In most Australian studies a relative threshold or precentile is 99 

used to determine excessive heat, where prolonged periods of heat last for at least three 100 

days (e.g. Tryhorn et al. 2006; Alexander and Arblaster 2009; Indian Ocean Climate 101 

Initiative 2012; Pezza et al. 2012). A relative threshold is extremely powerful, since 102 

what is considered extreme in one location and/or time of year may not be as extreme 103 

under other circumstances (Perkins and Alexander 2013). 104 

In recent years, the Australian Bureau of Meteorology has adopted its own index, the 105 

Excess Heat Factor (EHF; Nairn and Fawcett 2013), taking into account how hot a 106 

three-day period is compared to the prior month, as well as the climatological 95th 107 

percentile. Furthermore, a multi-definition, multi-characteristic framework has been 108 

developed (Perkins and Alexander 2013), ,employing five metrics of heatwave 109 

intensity, frequency and duration (see Fischer and Schär 2010) for three different 110 

definitions. This approach allows for a more consistent analysis, whilst providing useful 111 

information to a broad range of impacts communities. The approach of Perkins and 112 

Alexander (2013) is similar to the “hot-spell” approach of Furrer et al. (2010). In both 113 

frameworks all heatwave characteristics are modelled as a function of covariates, such 114 

as time. 115 

2.2 Large-scale mechanisms of atmospheric heatwaves 116 

Over recent years, there has been international advance in understanding the drivers 117 

and mechanisms of atmospheric heatwaves (e.g. Lokith and Broccoli, 2012; Horton et 118 

al., 2015; Krueger et al, 2015; Grotjahn et al., 2015), and Australia is no exception. 119 

Figure 1 provides a schematic explaining how physical mechanisms over various 120 

timescales that underpin atmospheric heatwaves may interact in the lead-up to an event. 121 



 

 

Several studies have examined the relationship between modes of large-scale climate 122 

variability and land surface temperatures across Australia (e.g. Nicholls et al. 1996; 123 

Jones and Trewin 2000; Arblaster and Alexander 2012; Min et al. 2013). While El 124 

Niño-Southern Oscillation (ENSO) is regarded as the primary large-scale driver of 125 

interannual variations of Australian rainfall (Risbey et al. 2009), the role of ENSO on 126 

the frequency and pattern of temperature extremes is varied (e.g. Arblaster and 127 

Alexander 2012; Min et al. 2013).  Significantly more heatwave days, longer and more 128 

intense events are observed over northern and eastern Australia during El Niño phases 129 

compared to La Niña phases (Perkins et al. 2015), yet different relationships occur in 130 

the far southeast (Trewin 2009; Parker et al. 2014a, Boschat et al. 2015). White et al. 131 

(2013a) find that the Indian Ocean Dipole (IOD) has a positive relationship over 132 

southern Australia on weekly–averaged maximum temperatures for austral winter and 133 

spring – the seasons when the IOD is active. 134 

Heatwaves in southeastern Australia are associated with phases 3-6 of the Madden 135 

Julian Oscillation (MJO) during the austral summer (Parker et al. 2014a), yet during 136 

spring MJO phases 2-3 are more influential (Marshall et al. 2013). Over most of 137 

Australia, the likelihood of extreme temperatures increase during negative phases of 138 

the Southern Annular Mode (SAM; Marshall et al. 2013), but relationships with 139 

summertime heatwaves are less clear (Perkins et al. 2015). Large-scale teleconnections 140 

to sea surface temperature (SST) and atmospheric conditions have also been suggested 141 

(e.g. Pezza et al. 2012). 142 

2.3 Atmospheric heatwave meteorology and land surface influences 143 

The most important weather system for Australian heatwaves is the persistent 144 

anticyclone, positioned adjacent to the area affected (Pezza et al. 2012; Marshall et al. 145 



 

 

2013), and largely associated with planetary-scale Rossby waves (Pezza et al. 2012; 146 

Parker et al. 2014b). Anticyclonic high-pressure systems bring warm air from the 147 

interior of the continent to the heatwave affected area, sustaining conditions for a 148 

number of days (Steffen et al. 2014). For southeastern Australia, anticyclonic systems 149 

are generally centred over the Tasman Sea in line with the subtropical ridge (Hudson et 150 

al. 2011; Marshall et al. 2013). Parker et al. (2014b) found an association with 151 

propagating and overturning Rossby waves, dynamically influencing the development 152 

of heatwaves over the southeast. Across the southwest, anticyclonic high-pressure 153 

systems are typically centred over the Great Australian Bight (Pezza et al. 2012). Other 154 

features include intra-seasonal drivers of variability (Marshall et al. 2013; White et al. 155 

2013a), rainfall deficits (Nicholls 2004), and the Australian monsoon and tropical 156 

cyclones (Parker et al. 2013). Mechanisms of extreme-heat build-up can include 157 

advection from lower latitudes, large-scale subsidence transporting higher potential 158 

temperature air from upper levels, or development and replacement of the diurnal mixed 159 

layer (McBride et al. 2009).  160 

International studies have shown the land-surface provides important feedbacks that 161 

can exacerbate or dampen heatwave intensity (Seneviratne et al. 2006). These include 162 

the albedo, surface roughness and soil moisture (e.g. Miralles et al. 2012; 2014). The 163 

first study of its kind for Australia, Kala et al. (2015) demonstrated the impact of soil 164 

moisture on the meteorology of the 2009 Black Saturday heatwave, highlighting the 165 

significant contribution desiccated soil can have for Australian events. Such studies are 166 

important, as a better understanding of the strength of these feedback mechanisms may 167 

allow for improved land cover management, potentially reducing heatwave severity 168 

(Davin et al. 2014). This may be particularly important in urban environments where 169 

the urban heat island effect has been found to compound temperature increases due to 170 



 

 

global warming (Argüeso et al. 2014; 2015).  171 

2.4 Measuring marine heatwaves 172 

Marine heatwaves are also measured using many metrics. Numerous studies simply 173 

quote the magnitude of ocean temperature anomalies above the monthly seasonal 174 

climatology (e.g. Pearce and Feng 2013). Temperature anomalies for specific events 175 

have been reported on weekly, daily and finer time scales, using satellite measurements 176 

and data loggers (e.g. Olita et al. 2006; Mills et al. 2013). Other studies use more 177 

sophisticated metrics including a period of at least three to five days where ocean 178 

temperatures were at least 3-5 °C above average (Sorte et al. 2010), thermal stress 179 

anomalies (Selig et al. 2010) or degree-heating weeks (e.g., Gleeson and Strong 1995). 180 

Extreme ocean temperatures have been examined using the frequency of days above 181 

the 95th percentile (Lima and Wethey 2012) and extreme value theory (Oliver et al. 182 

2014a,b). However, the study of marine heatwaves is in its infancy, with a recent study 183 

seeking to generate a standardized definition (Hobday et al. 2015). This is based on 184 

consecutive exceedances of the calendar day 90th percentile of temperature for at least 185 

five consecutive days. From this definition a set of metrics are computed that measure 186 

marine heatwave intensity, duration, cumulative intensity and rate of onset/decline. 187 

2.5 Large-scale mechanisms of marine heatwaves 188 

Large-scale mechanisms of marine heatwaves are less well understood. ENSO is known 189 

to play a role in driving temperature events such as the unprecedented 2011 “Ningaloo 190 

Niño” (Pearce and Feng 2013), whereby La Niña conditions drove a stronger than 191 

average Leeuwin Current southward along the coast of Western Australia (Kataoka et 192 

al. 2013). Off the southeast coast, mesoscale eddies from instabilities in the East 193 



 

 

Australian Current drive marine heatwaves along the continental shelf (Oliver et al. 194 

2014a). In regions such as coastal South Australia (e.g. Kämpf et al. 2004) and NSW 195 

(e.g. Roughan and Middleton 2004), local winds drive temperature variations due to 196 

upwelling and downwelling processes. Globally, high atmospheric temperatures and 197 

low winds commonly drive marine heatwaves and this relationship can be expected to 198 

hold around Australia (e.g. Olita et al. 2007; Pearce and Feng 2013).  199 

3. Observed changes  200 

3.1 Observed changes and attribution of atmospheric heatwaves 201 

The continentally averaged Australian mean temperature has increased by 0.9 °C since 202 

1950, slightly higher than the combined ocean-land global average of 0.85 °C (Bureau 203 

of Meteorology 2012), though it is worth noting that globally averaged land 204 

temperatures have warmed twice as fast as the combined average. Several studies have 205 

assessed various aspects of Australian extreme temperature trends (e.g. Tryhorn and 206 

Risbey 2006; Alexander and Arblaster 2009; Pezza et al. 2012; Perkins and Alexander 207 

2013; Perkins et al. 2012; Donat et al. 2013). Heatwave characteristics and the metrics 208 

used to define them (see Section 2.1) can vary markedly between studies, which limits 209 

consistent comparisons.  210 

Heatwave intensity, frequency and duration have increased across many Australian 211 

regions since the middle of the 20th century (Alexander and Arblaster 2009; Donat et 212 

al, 2013; Perkins and Alexander, 2013). Over 1971–2008, the hottest day in a heatwave 213 

increased faster than the average intensity over all days, with a measurable increase in 214 

the duration and frequency of heatwaves (Perkins and Alexander 2013). Similar 215 

patterns are found when extending the analysis to 1950-2013 (Steffen et al. 2014; see 216 



 

 

Figure 2). Throughout southwest Western Australia the frequency and intensity of hot 217 

spells (periods of extreme heat similar to heatwaves) increased over 1958-2010, but 218 

with a slight decrease in duration (Indian Ocean Climate Initiative 2012). Over the same 219 

period, inland areas of northwest Western Australia experienced increases in intensity, 220 

frequency, and duration, but along coastal areas, intensity tended to decrease. While 221 

emerging studies are explaining the dynamic/thermodynamic components of changes 222 

in Northern Hemisphere extreme temperatures (e.g. Horton et al., 2015), similar studies 223 

with an Australian focus do not currently exist. 224 

Classically, studies analysing the role of human influence on observed extreme 225 

temperature events are based on monthly or seasonal anomalies for large spatial 226 

domains (e.g. Stott et al., 2004; Lewis and Karoly 2013, 2014). In the Australian 227 

context, the intensity of the 2012/2013 summer was five times more likely to occur in 228 

a climate under the influence of anthropogenic greenhouse gases, compared to a climate 229 

without these influences (Lewis and Karoly, 2013). Moreover, it is virtually impossible 230 

that Australia’s hottest spring on record (2013) would have occurred without 231 

anthropogenic influence (Lewis and Karoly 2014; Knutson et al. 2014). While it must 232 

be made clear that attribution studies are specific to the event and domain analysed, 233 

there is evidence that a relationship exists between larger-scale, longer-term extreme 234 

temperature anomalies, and those over smaller spatial and temporal scales (Angelil et 235 

al., 2014). This means that the studies of Lewis and Karoly (2013, 2014) are indicative 236 

that a human signal exists in observed heatwaves over smaller domains and shorter 237 

temporal scales. Indeed, the intensity and frequency of heatwaves during the 2012/2013 238 

Australian summer respectively increased in occurrence by two- and three-fold due to 239 

anthropogenic influence  (Perkins et al. 2014a). While the aforementioned studies 240 

employed the same methodology (fraction of attributable risk, see Allen 2003) Other 241 



 

 

methods also exist for determining anthropogenic influence (e.g. Allen and Tett, 1999; 242 

Kokic et al. 2014). Such analyses have been conducted on long-term trends in daily 243 

extreme temperatures at global and continental scales (e.g. Kim et al. 2015), however, 244 

these methods not yet been specifically applied to Australian heatwave trends.  245 

3.3 Recent unprecedented heatwave events across Australia 246 

Australia has experienced some unprecedented and extreme heatwaves during the last 247 

decade. Between January 27th to February 8th 2009 an extremely severe heatwave 248 

occurred over Victoria and was followed by the most devastating bushfires (the “Black 249 

Saturday” fires) in Australian history (Parker et al. 2013). The land had been 250 

particularly dry in the weeks preceding the event, and the extreme conditions rapidly 251 

spread throughout southeastern Australia. Many records were set for high day and 252 

night-time temperatures as well as for the duration of extreme heat (National Climate 253 

Centre 2009). The heatwave occurred in association with a slow moving surface 254 

anticyclone and propagating Rossby waves at upper levels. Combined with the presence 255 

of a tropical low off northwest Western Australia and an active monsoon trough, ideal 256 

conditions were provided for the advection of hot air towards southern Australia (Parker 257 

et al. 2013). Recent research also suggests that unprecedented Antarctic warming and 258 

a polar anticyclone over the Southern Ocean was at least partly responsible for the 2009 259 

Victorian heatwave (Fiddes et al. 2015).  260 

The January 2013 heatwave produced a record breaking persistent extreme heat event 261 

that was unprecedented spatially and temporally (Bureau of Meteorology 2013). The 262 

main part of the heatwave, affecting the majority of the continent, lasted from the 4th to 263 

18th January, however parts of central and Western Australia experienced heatwave 264 

conditions during late December 2012 (Bureau of Meteorology 2013). The event set a 265 



 

 

new nationally-averaged daily maximum temperature record of 40.33 °C (7th January, 266 

2013), and consisted of seven consecutive days with maximum temperature above 39 267 

°C (Bureau of Meteorology 2013). This heatwave was associated with a delayed 268 

monsoon onset, and slow moving weather systems over the continent, following from 269 

a drier than average end to 2012. Extremely hot air masses developed across north 270 

Australia that were driven southwards ahead of a series of cold fronts, creating a 271 

persistent hot air mass that sat over the continent for over two weeks (Bureau of 272 

Meteorology 2013). 273 

4. Future changes  274 

4.1. Projections of heatwave events 275 

4.1.1. Heatwave projections from Global Climate Models 276 

Heatwave trends are expected to continue in a world under anthropogenic influence, 277 

with recent studies suggesting an increase in the frequency and duration of heatwaves 278 

over this century (Orlowsky and Seneviratne 2012; Coumou and Robinson 2013; 279 

Fischer et al., 2014). Much effort has been devoted to understanding the impact of 280 

anthropogenic climate change on heatwaves in North America and Europe (e.g. Lau 281 

and Nath 2012, 2014; Andrade et al. 2014), yet a similar effort has been lacking for 282 

Australia. The relevant studies are explored in this section. 283 

Tryhorn and Risbey (2006) and Alexander and Arblaster (2009), employing a single 284 

climate model and the Coupled Model Intercomparison Project phase 3 climate models 285 

respectively, found a projected increase in heatwave duration and warm nights in the 286 

21st century under greenhouse forcing. The recently revised regional climate change 287 

projections for Australia provide a regional assessment of plausible future projections 288 



 

 

of extreme temperatures (CSIRO 2015). Projections based on 24 CMIP5 climate 289 

models for the Representative Concentration Pathways (RCP) 4.5 (medium-low) and 290 

8.5 (high) emission scenarios (Taylor et al. 2012) show that changes in extremes are 291 

similar to changes in the annual means, consistent with observations (Alexander et al., 292 

2007). Projected changes in the frequency of warm spells (including heatwaves) by 293 

2100 show a dramatic and significant increase among the CMIP5 ensemble for both  294 

RCP4.5 and RCP8.5 (CSIRO 2015).  295 

Also using CMIP5 models, Cowan et al (2014) show heatwaves becoming more 296 

frequent, hotter, and longer across Australia by the end of the 21st century, consistent 297 

with revised regional projections (CSIRO 2015). Patterns of change are similar under 298 

RCP4.5 (Figures 3a,b) and RCP8.5 (Figures 3c,d), but scale with anthropogenic 299 

influence. Projections for northern Australia show the largest increase in heatwave 300 

days, due to the narrow temperature distribution in the tropics (e.g. Diffenbaugh and 301 

Scherer 2011). Increases in intensity and frequency across the southern regions also are 302 

substantial (Figures 3a,b,c,d). Under a moving-threshold heatwave definition, future 303 

changes in frequency are minimal, indicating a similar rate of increase to mean 304 

temperature (Cowan et al. 2014). However, the intensity across central-southern 305 

Australia still increases, implying that heatwaves are getting hotter at a faster rate than 306 

mean temperature in this region. 307 

4.1.2. Regional and downscaled climate projections 308 

Projected changes in temperature extremes have been quantified using dynamical 309 

downscaling techniques across Australia at 60km resolution (Perkins et al. 2014b). 310 

Higher resolutions of up to 10km have been applied to Tasmania through the Climate 311 

Futures for Tasmania project (White et al. 2013b) and for, NSW and the Australian 312 



 

 

Capital Territory (ACT) as part of the Regional Climate Modelling (NARCliM) project 313 

(Evans et al. 2014). Specifically, White et al. (2013b) show a significant average 314 

increase in warm spell duration (which also includes heatwaves) by 2100, relative to 315 

current baseline for a high-emissions (A2) scenario across Tasmania. While regional 316 

climate ensemble projections agree with large-scale trends from their host models, such 317 

studies add spatial detail in extreme temperature frequency and intensity projections. 318 

Figures 3e and 3f illustrate this using 50 km NARCLiM simulations for heatwave 319 

intensity and frequency, respectively (Evans et al. 2014). Australia-wide, changes in 320 

heatwave intensity are zonally distributed, with the largest changes located in tropical 321 

areas (Figures 3a,c,e).  322 

4.2.  Projected changes in atmospheric circulation 323 

Currently, there is minimal research in understanding the dynamic/thermodynamic 324 

components behind future projections of Australian heatwaves. Purich et al. (2014) 325 

found that under climate change, a poleward shift and intensification of the most severe 326 

heatwave-inducing anticyclones can be expected, consistent with previous studies of 327 

projected subtropical ridge and SAM changes (e.g. Timbal et al. 2010; Kent et al. 2013). 328 

However, the significant rise in the number of heatwave events in central Australia is 329 

currently predominantly attributed to thermodynamic changes (Purich et al. 2014). 330 

There have been suggestions that SSTs influence synoptic conditions associated with 331 

heatwaves globally (Della-Marta et al. 2007; Trenberth and Fasullo 2012) although 332 

whether local SST anomalies are caused by, or responsible for, Australian heatwaves is 333 

uncertain (eg Pezza et al., 2012; Boschat et al., 2015). Moreover, current evidence 334 

provided by observations is limited and CMIP5 models fail to capture the observed SST 335 

patterns prior to southern Australian heatwaves (Purich et al. 2014), possibly due to the 336 



 

 

general deficiency in CMIP5 models’ representation of SST variability (Wang et al. 337 

2015). Thus, further research is required on this topic, as well as how future changes in 338 

the large-scale modes will impact Australian heatwaves (see Parker et al. 2014a), given 339 

that models project significant increases in extreme El Niño and La Niña events (Cai et 340 

al. 2014 2015), and a continuation of positive SAM trends in the RCP8.5 scenario 341 

during this century (Zheng et al. 2013). 342 

4.3 Projections of marine heatwaves 343 

Marine heatwaves is an emerging field, and as such, there are only a handful of studies 344 

exploring future changes. Projected changes around Australia are driven by the overall 345 

uplift in the ambient ocean temperatures as well as changes in the large-scale modes of 346 

climate variability. Southeastern and southwestern Australia are identified as hotspots 347 

of ocean warming (Foster et al. 2014), with the Tasman Sea in particular experiencing 348 

surface warming that is three-to-four times the global rate (Holbrook and Bindoff 1997; 349 

Ridgway 2007). Lenton et al. (2015) show that CMIP5 models project a net warming 350 

(relative to a 1986-2005 baseline) of SST in the Australia region of 0.65OC by 2050 351 

under an RCP2.6 scenario, rising to 0.9OC and 1.2OC under RCP4.5 and RCP8.5 352 

scenarios respectively. The strongest signals are seen off the coasts of Tasmania and 353 

southwestern Australia, consistent the observed historical trends, as well as off the 354 

northwest shelf. This overall uplift is a significant driver of marine heatwaves as the 355 

probability of large heat anomalies becomes much greater. In addition, changes in 356 

drivers such as ENSO can significantly impact marine heatwave occurrences off the 357 

west coast of Australia (Feng et al. 2015) and changes in wind stress curl over high-358 

latitude regions of the South Pacific (e.g. through variations in the SAM) can impact 359 

eddy-driven marine heatwaves off southeastern Australia (Oliver et al. 2014a; Oliver 360 



 

 

and Holbrook 2014). However, there remains a large gap in the literature in what future 361 

projections of marine heatwaves might entail. 362 

5. Conclusions and remaining questions 363 

As part of this Special Issue on Australian natural hazards, this paper has summarized 364 

scientific advances in the measurement and understanding of Australian atmospheric 365 

and marine heatwaves, and the state of our knowledge on future changes. While there 366 

is no single way to measure heatwaves, it is clear that they have increased in their 367 

intensity, frequency and duration as anthropogenic influences on the climate increases. 368 

Future shorter-term research efforts could focus on developing more impact-relevant 369 

projections on finer spatial scales. Moreover, investigating the human influence on 370 

observed trends in Australian heatwaves could be undertaken using appropriate 371 

methods already applied internationally. 372 

Considerable advancements have been made in understanding the physical mechanisms 373 

driving Australian heatwaves, particularly relationships between ENSO and other 374 

modes of variability (Parker et al. 2014a; Perkins et al. 2015) and synoptic-scale 375 

dynamics (Pezza et al. 2012; Boschat et al. 2015; Parker et al. 2014b). However, there 376 

is no comprehensive, Australia-wide study documenting the physical dynamics behind 377 

heatwaves. An increased scientific focus in untangling the causes and changes in 378 

Australian heatwaves should therefore be prioritized.  This should include land surface 379 

feedbacks and antecedent soil moisture, dynamic/thermodynamic components of 380 

observed and future changes in heatwaves, and increases in the land-sea temperature 381 

gradient. The latter has not yet been studied in relation to Australian heatwaves, yet 382 

may be very important, especially over coastal regions. Moreover, researching physical 383 

connections with drought (Kiem et al. 2015, this issue) would be of substantial benefit 384 



 

 

to stakeholders of both hazards. Therefore, such work is imperative towards a greater 385 

understanding of atmospheric heatwaves, as well as advancing Australia’s international 386 

contribution towards this important field. 387 

There is also a significant amount of research effort to be undertaken on marine 388 

heatwaves. Given local events in recent years (Pearce and Feng 2013) and the proposal 389 

of a measurement framework (Hobday et al. 2015), the Australian community is in a 390 

great position to lead this research field. However, a considerable amount of work is 391 

required to understand future projections of marine heatwaves, as well as interactions 392 

between driving mechanisms. Such work should be prioritized in order to place our 393 

understanding of marine heatwaves in line with atmospheric events. 394 

Lastly, there is a need to work towards a more unified framework for identifying 395 

atmospheric events. At least in this case, the global impact of Australian research on 396 

marine heatwaves is more advanced than atmospheric events. The identification of 397 

events underpins subsequent research on dynamics, changes or impacts, thus a more 398 

unified framework allows for a consistent approach across relevant studies and fields 399 

of research. This would require a large amount of collaboration across all relevant 400 

sectors, and would need to be conducted at the global scale. This is an area that is likely 401 

to be active for many years to come, yet is imperative in addressing both regional and 402 

global grand challenges of heatwaves 403 
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Figures 711 

 712 

 713 

Figure 1: Heatwave schematic illustrating the various physical processes contributing to 714 

heatwaves, the interactions and feedbacks existing between them, and the timescales on 715 

which they operate. Not all processes need to be present for a heatwave to occur however 716 

(e.g. Fischer et al. 2007; Miralles et al. 2014). 717 
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 722 
Figure 2: Observed trends in Australian heatwave days over 1950-2013. A heatwave day must 723 

belong to a period of three or more consecutive days that have positive excess heat values (see 724 

Nairn and Fawcett 2013) Hatching indicates statistical significance at the 5% level. Updated 725 

from Perkins and Alexander (2013). 726 
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 730 
 731 

Figure 3: Austral summer heatwave increases compared to the historical climatology. 732 

(top) Ensemble average heatwave frequency (HWF; days per summer), and (bottom) 733 

heatwave amplitude (HWA; °C). (a,b) CMIP5 RCP4.5, (c,d) CMIP5 RCP8.5, and (e,f) 734 

50km downscaled NARCliM for SRES A2. CMIP5 increases are the calculated over 735 

2081-2100 compared to the 1950-2005 climatology. NARCliM increases are calculated 736 

over 2060-2079 compared to the 1990-2009 climatology. Heatwaves are based on the 737 

definition described in Pezza et al. (2012). Stippling indicates where the future and 738 

historical climatologies are not significantly different at the 95% confidence level. (a-739 

d) adapted from Fig. 3 in Cowan et al. (2014) and based on 15 CMIP5 models.  740 


