3,304 research outputs found

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed

    All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering

    Get PDF
    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schr\"odinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to "all-versus-nothing" proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem.Comment: 7 pages, 2 figures. Accepted in Sci. Re

    Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota

    Get PDF
    Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals. Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes. Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition. Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies

    Improved Measurements of Partial Rate Asymmetry in B -> h h Decays

    Full text link
    We report improved measurements of the partial rate asymmetry (Acp) in B -> h h decays with 140fb^-1 of data collected with the Belle detector at the KEKB e+e- collider. Here h stands for a charged or neutral pion or kaon and in total five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s pi0. The flavor of the last decay mode is determined from the accompanying B meson. Using a data sample 4.7 times larger than that of our previous measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero. Results for other decay modes are also presented.Comment: 9 pages, 1 figur

    Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags

    Full text link
    The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data sample was collected with the CDF detector at the Fermilab Tevatron collider during 1992 - 1995 by triggering on the existence of two lepton candidates in an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) = 1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the measured decay length and reconstructed momentum of the l- D*+ system. The charge of the lepton in the final state identifies the flavor of the anti-B0 meson at its decay. The second lepton in the event is used to infer the flavor of the anti-B0 meson at production. We measure the oscillation frequency to be Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review

    Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila

    Get PDF
    In Drosophila, most individual olfactory receptor neurons (ORNs) project bilaterally to both sides of the brain1,2. Having bilateral rather than unilateral projections may represent a useful redundancy. However, bilateral ORN projections to the brain should also compromise the ability to lateralize odors. Nevertheless, walking or flying Drosophila reportedly turn toward their more strongly stimulated antenna3-5. Here we show that each ORN spike releases ~40% more neurotransmitter from the axon branch ipsilateral to the soma, as compared to the contralateral branch. As a result, when an odor activates the antennae asymmetrically, ipsilateral central neurons begin to spike a few milliseconds before contralateral neurons, and ipsilateral central neurons also fire at a 30-50% higher rate. We show that a walking fly can detect a 5% asymmetry in total ORN input to its left and right antennal lobes, and can turn toward the odor in less time than it requires the fly to complete a stride. These results demonstrate that neurotransmitter release properties can be tuned independently at output synapses formed by a single axon onto two target cells with identical functions and morphologies. Our data also show that small differences in spike timing and spike rate can produce reliable differences in olfactory behavior

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0K+KKS0B^0 \to K^+K^-K^0_S, B+K+KK+B^+ \rightarrow K^+K^-K^+, and B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+K+KK+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0K+KKS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase βeff(ϕ(1020)KS0)=(21±6±2)\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(45+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi
    corecore