20 research outputs found

    Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Get PDF
    Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[01/0009-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[05/54695-3]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[04/06784-4]Ministerio da Ciencia e Tecnologia/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/Ministerio da Saude/Departamento Ciencia e Tecnologia (MCT/CNPq/MS/DECIT)[552324/20005-1]Ministerio da Ciencia e Tecnologia/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/Ministerio da Saude/Departamento Ciencia e Tecnologia (MCT/CNPq/MS/DECIT)[10120104096700]CNPq[141276/2004-5

    Improved Survival, Vascular Differentiation and Wound Healing Potential of Stem Cells Co-Cultured with Endothelial Cells

    Get PDF
    In this study, we developed a methodology to improve the survival, vascular differentiation and regenerative potential of umbilical cord blood (UCB)-derived hematopoietic stem cells (CD34+ cells), by co-culturing the stem cells in a 3D fibrin gel with CD34+-derived endothelial cells (ECs). ECs differentiated from CD34+ cells appear to have superior angiogenic properties to fully differentiated ECs, such as human umbilical vein endothelial cells (HUVECs). Our results indicate that the pro-survival effect of CD34+-derived ECs on CD34+ cells is mediated, at least in part, by bioactive factors released from ECs. This effect likely involves the secretion of novel cytokines, including interleukin-17 (IL-17) and interleukin-10 (IL-10), and the activation of the ERK 1/2 pathway in CD34+ cells. We also show that the endothelial differentiation of CD34+ cells in co-culture with CD34+-derived ECs is mediated by a combination of soluble and insoluble factors. The regenerative potential of this co-culture system was demonstrated in a chronic wound diabetic animal model. The co-transplantation of CD34+ cells with CD34+-derived ECs improved the wound healing relatively to controls, by decreasing the inflammatory reaction and increasing the neovascularization of the wound

    A Combined Synthetic-Fibrin Scaffold Supports Growth and Cardiomyogenic Commitment of Human Placental Derived Stem Cells

    Get PDF
    Aims: A potential therapy for myocardial infarction is to deliver isolated stem cells to the infarcted site. A key issue with this therapy is to have at one\u27s disposal a suitable cell delivery system which, besides being able to support cell proliferation and differentiation, may also provide handling and elastic properties which do not affect cardiac contractile function. In this study an elastic scaffold, obtained combining a poly(ether)urethane-polydimethylsiloxane (PEtU-PDMS) semi-interpenetrating polymeric network (s-IPN) with fibrin, was used as a substrate for in vitro studies of human amniotic mesenchymal stromal cells (hAMSC) growth and differentiation. Methodology/Principal Findings: After hAMSC seeding on the fibrin side of the scaffold, cell metabolic activity and proliferation were evaluated by WST-1 and bromodeoxyuridine assays. Morphological changes and mRNAs expression for cardiac differentiation markers in the hAMSCs were examined using immunofluorescence and RT-PCR analysis. The beginning of cardiomyogenic commitment of hAMSCs grown on the scaffold was induced, for the first time in this cell population, by a nitric oxide (NO) treatment. Following NO treatment hAMSCs show morphological changes, an increase of the messenger cardiac differentiation markers [troponin I (TnI) and NK2 transcription factor related locus 5 (Nkx2.5)] and a modulation of the endothelial markers [vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR)]. Conclusions/Significance: The results of this study suggest that the s-IPN PEtU-PDMS/fibrin combined scaffold allows a better proliferation and metabolic activity of hAMSCs cultured up to 14 days, compared to the ones grown on plastic dishes. In addition, the combined scaffold sustains the beginning of hAMSCs differentiation process towards a cardiomyogenic lineage
    corecore