1,059 research outputs found

    Environmental surveillance for Salmonella Typhi as a tool to estimate the incidence of typhoid fever in low-income populations.

    Get PDF
    Background: The World Health Organisation recommends prioritised use of recently prequalified typhoid conjugate vaccines in countries with the highest incidence of typhoid fever. However, representative typhoid surveillance data are lacking in many low-income countries because of the costs and challenges of diagnostic clinical microbiology. Environmental surveillance (ES) of Salmonella Typhi in sewage and wastewater using molecular methods may offer a low-cost alternative, but its performance in comparison with clinical surveillance has not been assessed. Methods: We developed a harmonised protocol for typhoid ES and its implementation in communities in India and Malawi where it will be compared with findings from hospital-based surveillance for typhoid fever. The protocol includes methods for ES site selection based on geospatial analysis, grab and trap sample collection at sewage and wastewater sites, and laboratory methods for sample processing, concentration and quantitative polymerase chain reaction (PCR) to detect Salmonella Typhi. The optimal locations for ES sites based on digital elevation models and mapping of sewage and river networks are described for each community and their suitability confirmed through field investigation. We will compare the prevalence and abundance of Salmonella Typhi in ES samples collected each month over a 12-month period to the incidence of blood culture confirmed typhoid cases recorded at referral hospitals serving the study areas. Conclusions: If environmental detection of Salmonella Typhi correlates with the incidence of typhoid fever estimated through clinical surveillance, typhoid ES may be a powerful and low-cost tool to estimate the local burden of typhoid fever and support the introduction of typhoid conjugate vaccines. Typhoid ES could also allow the impact of vaccination to be assessed and rapidly identify circulation of drug resistant strains

    Development of a Web-based Resident Profiling Tool to Support Training in Practice-based Learning and Improvement

    Get PDF
    Multiple factors are driving residency programs to explicitly address practice-based learning and improvement (PBLI), yet few information systems exist to facilitate such training. We developed, implemented, and evaluated a Web-based tool that provides Internal Medicine residents at the University of Virginia Health System with population-based reports about their ambulatory clinical experiences. Residents use Systems and Practice Analysis for Resident Competencies (SPARC) to identify potential areas for practice improvement. Thirty-three (65%) of 51 residents completed a survey assessing SPARC’s usefulness, with 94% agreeing that it was a useful educational tool. Twenty-six residents (51%) completed a before–after study indicating increased agreement (5-point Likert scale, with 5=strongly agree) with statements regarding confidence in ability to access population-based data about chronic disease management (mean [SD] 2.5 [1.2] vs. 4.5 [0.5], p < .001, sign test) and information comparing their practice style to that of their peers (2.2 [1.2] vs. 4.6 [0.5], p < .001)

    Wandering permanent pacemaker generators in children: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Epicardial permanent pacemaker generators are implanted some times in the abdominal wall in pediatric age groups.</p> <p>Case presentation</p> <p>Three permanent epicardial pacemakers that migrated in an unusual manner producing intraabdominal complications are reported.</p> <p>Conclusion</p> <p>The different clinical presentations of pacemaker migration in the pediatric age groups are highlighted and a few suggestions are made for avoiding such a complication.</p

    Robust markers and sample sizes for multi‐centre trials of Huntington's disease

    Get PDF
    Objective: The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD. Methods: We used 1 postprocessing pipeline to retrospectively analyze T1-weighted magnetic resonance imaging (MRI) scans from 624 participants at 3 time points, from the PREDICT-HD, TRACK-HD, and IMAGE-HD studies. We used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible treatment effects in disease-affected anatomical regions. We used our model to estimate the statistical power of possible treatment effects for anatomical regions and clinical markers. Results: We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5) between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance; for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and nonventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers. Interpretation: Our findings provide the first cross-study validation of structural imaging markers in HD, supporting the use of these measurements as endpoints for both observational studies and clinical trial

    Transcultural Diabetes Nutrition Therapy Algorithm: The Asian Indian Application

    Get PDF
    India and other countries in Asia are experiencing rapidly escalating epidemics of type 2 diabetes (T2D) and cardiovascular disease. The dramatic rise in the prevalence of these illnesses has been attributed to rapid changes in demographic, socioeconomic, and nutritional factors. The rapid transition in dietary patterns in India—coupled with a sedentary lifestyle and specific socioeconomic pressures—has led to an increase in obesity and other diet-related noncommunicable diseases. Studies have shown that nutritional interventions significantly enhance metabolic control and weight loss. Current clinical practice guidelines (CPGs) are not portable to diverse cultures, constraining the applicability of this type of practical educational instrument. Therefore, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed and then customized per regional variations in India. The resultant India-specific tDNA reflects differences in epidemiologic, physiologic, and nutritional aspects of disease, anthropometric cutoff points, and lifestyle interventions unique to this region of the world. Specific features of this transculturalization process for India include characteristics of a transitional economy with a persistently high poverty rate in a majority of people; higher percentage of body fat and lower muscle mass for a given body mass index; higher rate of sedentary lifestyle; elements of the thrifty phenotype; impact of festivals and holidays on adherence with clinic appointments; and the role of a systems or holistic approach to the problem that must involve politics, policy, and government. This Asian Indian tDNA promises to help guide physicians in the management of prediabetes and T2D in India in a more structured, systematic, and effective way compared with previous methods and currently available CPGs

    Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction

    Get PDF
    BACKGROUND: Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. METHODS: We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. RESULTS: Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. CONCLUSION: A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al
    corecore