146 research outputs found

    Landscape of international event-based biosurveillance

    Get PDF
    Event-based biosurveillance is a scientific discipline in which diverse sources of data, many of which are available from the Internet, are characterized prospectively to provide information on infectious disease events. Biosurveillance complements traditional public health surveillance to provide both early warning of infectious disease events and situational awareness. The Global Health Security Action Group of the Global Health Security Initiative is developing a biosurveillance capability that integrates and leverages component systems from member nations. This work discusses these biosurveillance systems and identifies needed future studies

    Applications of real number theorem proving in PVS

    Get PDF
    This work is supported by funding from the EPSRC under grants EP/H500162, EP/F02309X and GR/S31242Real number theorem proving has many uses, particularly for verification of safety critical systems and systems for which design errors may be costly. We discuss a chain of developments building on real number theorem proving in PVS. This leads from the verification of aspects of an air traffic control system, through work on the integration of computer algebra and automated theorem proving to a new tool, NRV, first presented here that builds on the capabilities of Maple and PVS to provide a verified and automatic analysis of Nichols plots. This automates a standard technique used by control engineers and greatly improves assurance compared with the traditional method of visual inspection of the Nichols plots.Publisher PDFPeer reviewe

    Cross-talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors

    Get PDF
    Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho-physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro-environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross-talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co-culture of immortalized human myoblasts and motor neurons from rat-embryo spinal-cord explants, using a culture medium free from serum and neurotrophic or growth factors. The aim of this study was to assess how functional NMJs were established in this co-culture devoid of exogenous neural growth factors. To investigate this, an ELISA-based microarray was used to compare the composition of soluble endogenously secreted growth factors in this co-culture with an a-neural muscle culture. The levels of seven neurotrophic factors brain-derived neurotrophic factor (BDNF), glial-cell-line-derived neurotrophic factor (GDNF), insulin-like growth factor-binding protein-3 (IGFBP-3), insulin-like growth factor-1 (IGF-1), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and vascular endothelial growth factor (VEGF) were higher (p < 0.05) in the supernatant of NMJ culture compared to those in the supernatant of the a-neural muscle culture. This indicates that the cross-talk between muscle and motor neurons promotes the secretion of soluble growth factors contributing to the local microenvironment thereby providing a favourable regenerative niche for NMJs formation and maturation

    A novel bioengineered functional motor unit platform to study neuromuscular interaction

    Get PDF
    Background: In many neurodegenerative and muscular disorders, and loss of innervation in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key pathogenic features. In vivo studies of MUs are constrained due to difficulties isolating and extracting functional MUs, so there is a need for a simplified and reproducible system of engineered in vitro MUs. Objective: to develop and characterise a functional MU model in vitro, permitting the analysis of MU development and function. Methods: an immortalised human myoblast cell line was co-cultured with rat embryo spinal cord explants in a serum-free/growth fact media. MUs developed and the morphology of their components (neuromuscular junction (NMJ), myotubes and motor neurons) were characterised using immunocytochemistry, phase contrast and confocal microscopy. The function of the MU was evaluated through live observations and videography of spontaneous myotube contractions after challenge with cholinergic antagonists and glutamatergic agonists. Results: blocking acetylcholine receptors with α-bungarotoxin resulted in complete, cessation of myotube contractions, which was reversible with tubocurarine. Furthermore, myotube activity was significantly higher with the application of L-glutamic acid. All these observations indicate the formed MU are functional. Conclusion: a functional nerve-muscle co-culture model was established that has potential for drug screening and pathophysiological studies of neuromuscular interactions

    Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells

    Get PDF
    Background: Neuromuscular junctions (NMJs) consist of the presynaptic cholinergic motoneuron terminals and the corresponding postsynaptic motor endplates on skeletal muscle fibers. At the NMJ the action potential of the neuron leads, via release of acetylcholine, to muscle membrane depolarization that in turn is translated into muscle contraction and physical movement. Despite the fact that substantial NMJ research has been performed, the potential of in vivo NMJ investigations is inadequate and difficult to employ. A simple and reproducible in vitro NMJ model may provide a robust means to study the impact of neurotrophic factors, growth factors, and hormones on NMJ formation, structure, and function. Methods: This report characterizes a novel in vitro NMJ model utilizing immortalized human skeletal muscle stem cells seeded on 35 mm glass-bottom dishes, cocultured and innervated with spinal cord explants from rat embryos at ED 13.5. The cocultures were fixed and stained on day 14 for analysis and assessment of NMJ formation and development. Results: This unique serum-and trophic factor-free system permits the growth of cholinergic motoneurons, the formation of mature NMJs, and the development of highly differentiated contractile myotubes, which exhibit appropriate configuration of transversal triads, representative of in vivo conditions. Conclusion: This coculture system provides a tool to study vital features of NMJ formation, regulation, maintenance, and repair, as well as a model platform to explore neuromuscular diseases and disorders affecting NMJs

    The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex

    Get PDF
    The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12– 19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341– 332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calcalkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments

    Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry

    Get PDF
    Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100 μCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70 mg, 80 nCi of [14C]ixabepilone over 3 h. Plasma, urine and faeces were collected up to 7 days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities

    Presence of an in situ component is associated with reduced biological aggressiveness of size-matched invasive breast cancer

    Get PDF
    Background:The metastatic propensity of invasive ductal carcinoma (IDC) of the breast correlates with axillary node involvement and with expression of the proliferation antigen Ki-67, whereas ductal carcinoma in situ (DCIS) is non-metastasising. To clarify whether concomitant DCIS affects IDC prognosis, we compared Ki-67 expression and node status of size-matched IDC subgroups either with DCIS (IDC-DCIS) or without DCIS (pure IDC).Methods:We analysed data from 1355 breast cancer patients. End points were defined by the association of IDC (with or without DCIS) with grade, nodal status, Ki-67, and ER/HER2.Results: Size-matched IDC-DCIS was more likely than pure IDC to be screen detected (P0.03), to occur in pre-menopausal women (P0.002), and to be either ER-positive (P0.002) or HER2-positive (P0.0005), but less likely to be treated with breast-conserving surgery (P0.004). Grade and Ki-67 were lower in IDC-DCIS than in pure IDC (P0.02), and declined as the DCIS enlarged (P0.01). Node involvement and lymphovascular invasion in IDC-DCIS increased with the size ratio of IDC to DCIS (P0.01). A 60-month cancer-specific survival favoured IDC-DCIS over size-matched pure IDC (97.4 vs 96.0%).Conclusion:IDC co-existing with DCIS is characterised by lower proliferation and metastatic potential than size-matched pure IDC, especially if the ratio of DCIS to IDC size is high. We submit that IDC-DCIS is biologically distinct from pure IDC, and propose an incremental molecular pathogenesis of IDC-DCIS evolution involving an intermediate DCIS precursor that remains dependent for replication on upstream mitogens. © 2010 Cancer Research UK All rights reserved.published_or_final_versio

    A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cassava (<it>Manihot esculenta </it>Crantz) can produce cyanide, a toxic compound, without self-injury. That ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL) associated with the CN in an outbred population derived from 'Hanatee' × 'Huay Bong 60', two contrasting cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand. CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers.</p> <p>Results</p> <p>The phenotypic values showed continuous variation with transgressive segregation events with more (115 ppm) and less CN (15 ppm) than either parent ('Hanatee' had 33 ppm and 'Huay Bong 60' had 95 ppm). The linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The average marker interval was 5.8 cM. Five QTL underlying CN were detected. <it>CN08R1</it>from 2008 at Rayong, <it>CN09R1</it>and <it>CN09R2 </it>from 2009 at Rayong, and <it>CN09L1 </it>and <it>CN09L2 </it>from 2009 at Lop Buri were mapped on linkage group 2, 5, 10 and 11, respectively. Among all the identified QTL, <it>CN09R1 </it>was the most significantly associated with the CN trait with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%.</p> <p>Conclusions</p> <p>Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait.</p

    Polymorphisms in the Estrogen Receptor 1 and Vitamin C and Matrix Metalloproteinase Gene Families Are Associated with Susceptibility to Lymphoma

    Get PDF
    BACKGROUND: Non-Hodgkin lymphoma (NHL) is the fifth most common cancer in the U.S. and few causes have been identified. Genetic association studies may help identify environmental risk factors and enhance our understanding of disease mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: 768 coding and haplotype tagging SNPs in 146 genes were examined using Illumina GoldenGate technology in a large population-based case-control study of NHL in the San Francisco Bay Area (1,292 cases 1,375 controls are included here). Statistical analyses were restricted to HIV- participants of white non-Hispanic origin. Genes involved in steroidogenesis, immune function, cell signaling, sunlight exposure, xenobiotic metabolism/oxidative stress, energy balance, and uptake and metabolism of cholesterol, folate and vitamin C were investigated. Sixteen SNPs in eight pathways and nine haplotypes were associated with NHL after correction for multiple testing at the adjusted q<0.10 level. Eight SNPs were tested in an independent case-control study of lymphoma in Germany (494 NHL cases and 494 matched controls). Novel associations with common variants in estrogen receptor 1 (ESR1) and in the vitamin C receptor and matrix metalloproteinase gene families were observed. Four ESR1 SNPs were associated with follicular lymphoma (FL) in the U.S. study, with rs3020314 remaining associated with reduced risk of FL after multiple testing adjustments [odds ratio (OR) = 0.42, 95% confidence interval (CI) = 0.23-0.77) and replication in the German study (OR = 0.24, 95% CI = 0.06-0.94). Several SNPs and haplotypes in the matrix metalloproteinase-3 (MMP3) and MMP9 genes and in the vitamin C receptor genes, solute carrier family 23 member 1 (SLC23A1) and SLC23A2, showed associations with NHL risk. CONCLUSIONS/SIGNIFICANCE: Our findings suggest a role for estrogen, vitamin C and matrix metalloproteinases in the pathogenesis of NHL that will require further validation
    corecore