705 research outputs found

    Dimerization-Induced Fermi-Surface Reconstruction in IrTe2

    Get PDF
    We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu

    L-Arginine promotes gut hormone release and reduces food intake in rodents

    Get PDF
    Aims: To investigate the anorectic effect of L‐arginine (L‐Arg) in rodents. Methods: We investigated the effects of L‐Arg on food intake, and the role of the anorectic gut hormones glucagon‐like peptide‐1 (GLP‐1) and peptide YY (PYY), the G‐protein‐coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. Results: Oral gavage of L‐Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet‐induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L‐Arg stimulated GLP‐1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP‐1 and PYY receptors did not influence the anorectic effect of L‐Arg. L‐Arg‐mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L‐Arg suppressed food intake in rats. Conclusions: L‐Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L‐Arg is unlikely to be mediated by GLP‐1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L‐Arg suppressed food intake in rats, suggesting that L‐Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L‐Arg suppresses food intake and its utility in the treatment of obesity

    High temperature AlInP X-ray spectrometers

    Get PDF
    Two custom-made Al0.52In0.48P p+-i-n+ mesa photodiodes with different diameters (217 µm ± 15 µm and 409 µm ± 28 µm) and i layer thicknesses of 6 µm have been electrically characterised over the temperature range 0 °C to 100 °C. Each photodiode was then investigated as a high-temperature-tolerant photon counting X-ray detector by connecting it to a custom-made low-noise charge-sensitive preamplifier and illuminating it with an 55Fe radioisotope X-ray source (Mn Kα = 5.9 keV; Mn Kβ = 6.49 keV). At 100 °C, the best energy resolutions (full width at half maximum at 5.9 keV) achieved using the 217 µm ± 15 µm diameter photodiode and the 409 µm ±28 µm diameter photodiode were 1.31 keV ± 0.04 keV and 1.64 keV ±0.08 keV, respectively. Noise analysis of the system is presented. The dielectric dissipation factor of Al0.52In0.48P was estimated as a function of temperature, up to 100 °C. The results show the performance of the thickest Al0.52In0.48P X-ray detectors so far reported at high temperature. The work has relevance for the development of novel space science instrumentation for use in hot space environments and extreme terrestrial applications

    Engineered mussel bioglue as a functional osteoinductive binder for grafting of bone substitute particles to accelerate in vivo bone regeneration

    Get PDF
    Xenograft bone substitutes, such as deproteinized bovine bone mineral (DBBM), have been widely employed as osteoconductive structural materials for bone tissue engineering. However, the loss of xenograft bone substitute particles in defects has been a major limitation, along with a lack of osteoinductive function. Mussel adhesive protein (MAP), a remarkable and powerful adhesive biomaterial in nature, can attach to various substrates, even in wet environments. Its adhesive and water-resistant abilities are considered to be mainly derived from the reduced catechol form, 3,4-dihydroxyphenylalanine (DOPA), of its tyrosine residues. Here, we evaluated the use of DOPA-containing MAP as a functional binder biomaterial to effectively retain DBBM particles at the defect site during in vivo bone regeneration. We observed that DOPA-containing MAP was able to bind DBBM particles easily to make an aggregate, and grafted DBBM particles were not lost in a defect in the rat calvaria during the healing period. Importantly, grafting of a DOPA-containing MAP-bound DBBM aggregate resulted in remarkably accelerated in vivo bone regeneration and even bone remodeling. Interestingly, we found that the DOPA residues in the modified MAP had an osteoinductive ability based on clear observation of the in vivo maturation of new bones with a similar bone density to the normal bone and of the in vitro osteogenic differentiation of osteoblast cells. Collectively, DOPA-containing MAP is a promising functional binder biomaterial for xenograft bone substitute-assisted bone regeneration with enhanced osteoconductivity and acquired osteoinductivity. This mussel glue could also be successfully utilized as a potential biomaterial for general bone tissue engineering.open1145sciescopu

    Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

    Get PDF
    © The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe

    Measurement of the main and critical parameters for optimal laser treatment of heart disease

    Get PDF
    Abstract: Laser light is frequently used in the diagnosis and treatment of patients. As in traditional treatments such as medication, bypass surgery, and minimally invasive ways, laser treatment can also fail and present serious side effects. The true reason for laser treatment failure or the side effects thereof, remains unknown. From the literature review conducted, and experimental results generated we conclude that an optimal laser treatment for coronary artery disease (named heart disease) can be obtained if certain critical parameters are correctly measured and understood. These parameters include the laser power, the laser beam profile, the fluence rate, the treatment time, as well as the absorption and scattering coefficients of the target treatment tissue. Therefore, this paper proposes different, accurate methods for the measurement of these critical parameters to determine the optimal laser treatment of heart disease with a minimal risk of side effects. The results from the measurement of absorption and scattering properties can be used in a computer simulation package to predict the fluence rate. The computing technique is a program based on the random number (Monte Carlo) process and probability statistics to track the propagation of photons through a biological tissue

    The distinct category of healthcare associated bloodstream infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bloodstream infections (BSI) have been traditionally classified as either community acquired (CA) or hospital acquired (HA) in origin. However, a third category of healthcare-associated (HCA) community onset disease has been increasingly recognized. The objective of this study was to compare and contrast characteristics of HCA-BSI with CA-BSI and HA-BSI.</p> <p>Methods</p> <p>All first episodes of BSI occurring among adults admitted to hospitals in a large health region in Canada during 2000-2007 were identified from regional databases. Cases were classified using a series of validated algorithms into one of HA-BSI, HCA-BSI, or CA-BSI and compared on a number of epidemiologic, microbiologic, and outcome characteristics.</p> <p>Results</p> <p>A total of 7,712 patients were included; 2,132 (28%) had HA-BSI, 2,492 (32%) HCA-BSI, and 3,088 (40%) had CA-BSI. Patients with CA-BSI were significantly younger and less likely to have co-morbid medical illnesses than patients with HCA-BSI or HA-BSI (p < 0.001). The proportion of cases in males was higher for HA-BSI (60%; p < 0.001 vs. others) as compared to HCA-BSI or CA-BSI (52% and 54%; p = 0.13). The proportion of cases that had a poly-microbial etiology was significantly lower for CA-BSI (5.5%; p < 0.001) compared to both HA and HCA (8.6 vs. 8.3%). The median length of stay following BSI diagnosis 15 days for HA, 9 days for HCA, and 8 days for CA (p < 0.001). Overall the most common species causing bloodstream infection were <it>Escherichia coli, Staphylococcus aureus</it>, and <it>Streptococcus pneumoniae</it>. The distribution and relative rank of importance of these species varied according to classification of acquisition. Twenty eight day all cause case-fatality rates were 26%, 19%, and 10% for HA-BSI, HCA-BSI, and CA-BSI, respectively (p < 0.001).</p> <p>Conclusion</p> <p>Healthcare-associated community onset infections are distinctly different from CA and HA infections based on a number of epidemiologic, microbiologic, and outcome characteristics. This study adds further support for the classification of community onset BSI into separate CA and HCA categories.</p

    Disseminated Mycobacterium avium complex infection in an immunocompetent pregnant woman

    Get PDF
    BACKGROUND: Disseminated mycobacterium avium complex (MAC) occurs mainly in immunocompromised hosts, which is associated with abnormal cellular immunity. CASE PRESENTATION: A 26-year-old pregnant woman presented with fever and general weakness. Miliary lung nodules were noted on chest X-ray. Under the impression of miliary tuberculosis, anti-tuberculosis medication was administered. However, the patient was not improved. Further work-up demonstrated MAC in the sputum and placenta. The patient was treated successfully with clarithromycin-based combination regimen. CONCLUSION: This appears to be the first case of disseminated MAC in an otherwise healthy pregnant woman. Clinicians should be alert for the diagnosis of MAC infection in diverse clinical conditions

    The Genetic Effect of Copy Number Variations on the Risk of Type 2 Diabetes in a Korean Population

    Get PDF
    BACKGROUND: Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes-associated CNV in a Korean cohort. METHODOLOGY/PRINCIPAL FINDINGS: Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758-45999227 (P = 8.6E-04, P(corr) = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation. CONCLUSION/SIGNIFICANCE: We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations

    Temperature effects on an InGaP (GaInP) (55)Fe X-ray photovoltaic cell.

    Get PDF
    This paper investigates the effects of temperature on an InGaP (GaInP) (55)Fe X-ray photovoltaic cell prototype for a radioisotope microbattery (also called a nuclear microbattery). An In0.5Ga0.5P p-i-n (5 μm i-layer) mesa photodiode was illuminated by a standard 206 MBq (55)Fe radioisotope X-ray source and characterised over the temperature range -20 °C to 100 °C. The electrical power output of the device reached its maximum value of 1.5 pW at a temperature of -20 °C. An open circuit voltage and a short circuit current of 0.82 V and 2.5 pA, respectively, were obtained at -20 °C. While the electrical power output and the open circuit voltage decreased with increasing temperature, an almost flat trend was found for the short circuit current. The cell conversion efficiency decreased from 2.1% at -20 °C to 0.7% at 100 °C
    corecore