292 research outputs found

    Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols

    Get PDF
    The chirality, or ‘handedness’, of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge3. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.National Institutes of Health (U.S.) (Grant GM-58160

    Sleep assessment in a population-based study of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is a disabling condition that affects approximately 800,000 adult Americans. The pathophysiology remains unknown and there are no diagnostic markers or characteristic physical signs or laboratory abnormalities. Most CFS patients complain of unrefreshing sleep and many of the postulated etiologies of CFS affect sleep. Conversely, many sleep disorders present similarly to CFS. Few studies characterizing sleep in unselected CFS subjects have been published and none have been performed in cases identified from population-based studies. METHODS: The study included 339 subjects (mean age 45.8 years, 77% female, 94.1% white) identified through telephone screen in a previously described population-based study of CFS in Wichita, Kansas. They completed questionnaires to assess fatigue and wellness and 2 self-administered sleep questionnaires. Scores for five of the six sleep factors (insomnia/hypersomnia, non-restorative sleep, excessive daytime somnolence, sleep apnea, and restlessness) in the Centre for Sleep and Chronobiology's Sleep Assessment Questionnaire(© )(SAQ(©)) were dichotomized based on threshold. The Epworth Sleepiness Scale score was used as a continuous variable. RESULTS: 81.4% of subjects had an abnormality in at least one SAQ(© )sleep factor. Subjects with sleep factor abnormalities had significantly lower wellness scores but statistically unchanged fatigue severity scores compared to those without SAQ(© )abnormality. CFS subjects had significantly increased risk of abnormal scores in the non-restorative (adjusted odds ratio [OR] = 28.1; 95% confidence interval [CI]= 7.4–107.0) and restlessness (OR = 16.0; 95% CI = 4.2–61.6) SAQ(© )factors compared to non-fatigued, but not for factors of sleep apnea or excessive daytime somnolence. This is consistent with studies finding that, while fatigued, CFS subjects are not sleepy. A strong correlation (0.78) of Epworth score was found only for the excessive daytime somnolence factor. CONCLUSIONS: SAQ(© )factors describe sleep abnormalities associated with CFS and provide more information than the Epworth score. Validation of these promising results will require formal polysomnographic sleep studies

    Sleep characteristics of persons with chronic fatigue syndrome and non-fatigued controls: results from a population-based study

    Get PDF
    BACKGROUND: The etiology and pathophysiology of chronic fatigue syndrome (CFS) remain inchoate. Attempts to elucidate the pathophysiology must consider sleep physiology, as unrefreshing sleep is the most commonly reported of the 8 case-defining symptoms of CFS. Although published studies have consistently reported inefficient sleep and documented a variable occurrence of previously undiagnosed primary sleep disorders, they have not identified characteristic disturbances in sleep architecture or a distinctive pattern of polysomnographic abnormalities associated with CFS. METHODS: This study recruited CFS cases and non-fatigued controls from a population based study of CFS in Wichita, Kansas. Participants spent two nights in the research unit of a local hospital and underwent overnight polysomnographic and daytime multiple sleep latency testing in order to characterize sleep architecture. RESULTS: Approximately 18% of persons with CFS and 7% of asymptomatic controls were diagnosed with severe primary sleep disorders and were excluded from further analysis. These rates were not significantly different. Persons with CFS had a significantly higher mean frequency of obstructive apnea per hour (p = .003); however, the difference was not clinically meaningful. Other characteristics of sleep architecture did not differ between persons with CFS and controls. CONCLUSION: Although disordered breathing during sleep may be associated with CFS, this study generally did not provide evidence that altered sleep architecture is a critical factor in CFS. Future studies should further scrutinize the relationship between subjective sleep quality relative to objective polysomnographic measures

    Tree Resin Composition, Collection Behavior and Selective Filters Shape Chemical Profiles of Tropical Bees (Apidae: Meliponini)

    Get PDF
    The diversity of species is striking, but can be far exceeded by the chemical diversity of compounds collected, produced or used by them. Here, we relate the specificity of plant-consumer interactions to chemical diversity applying a comparative network analysis to both levels. Chemical diversity was explored for interactions between tropical stingless bees and plant resins, which bees collect for nest construction and to deter predators and microbes. Resins also function as an environmental source for terpenes that serve as appeasement allomones and protection against predators when accumulated on the bees' body surfaces. To unravel the origin of the bees' complex chemical profiles, we investigated resin collection and the processing of resin-derived terpenes. We therefore analyzed chemical networks of tree resins, foraging networks of resin collecting bees, and their acquired chemical networks. We revealed that 113 terpenes in nests of six bee species and 83 on their body surfaces comprised a subset of the 1,117 compounds found in resins from seven tree species. Sesquiterpenes were the most variable class of terpenes. Albeit widely present in tree resins, they were only found on the body surface of some species, but entirely lacking in others. Moreover, whereas the nest profile of Tetragonula melanocephala contained sesquiterpenes, its surface profile did not. Stingless bees showed a generalized collecting behavior among resin sources, and only a hitherto undescribed species-specific “filtering” of resin-derived terpenes can explain the variation in chemical profiles of nests and body surfaces from different species. The tight relationship between bees and tree resins of a large variety of species elucidates why the bees' surfaces contain a much higher chemodiversity than other hymenopterans

    Fast Detection of Unexpected Sound Intensity Decrements as Revealed by Human Evoked Potentials

    Get PDF
    The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system

    The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML

    Get PDF
    Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations
    corecore