110 research outputs found
G337.342-0.119 (the "Pebble"): A Cold, Dense, High-Mass Molecular Cloud with Unusually Large Linewidths and a Candidate High-Mass Star Cluster Progenitor
Exactly how high-mass star clusters form, especially the young massive clusters (YMCs: age solar masses), remains an open problem, largely because they are so rare that examples of their cold, dense, molecuar progenitors remain elusive. The molecular cloud G337.3420.119, the `Pebble,' is a candidate for such a cold progenitor. Although G337.3420.119 was originally identified as four separate ATLASGAL clumps, the similarity in their molecular line velocities and linewidths in the MALT90 dataset demonstrate that these four clumps are in fact one single, coherent cloud. This cloud is unique in the MALT90 survey for its combination of both cold temperatures ( K) and large linewidths km s). The near/far kinematic distance ambiguity is difficult to resolve for G337.3420.119. At the near kinematic distance (4.7 kpc), the mass is 5,000 solar masses and the size is pc. At the far kinematic distance (11 kpc), the mass is 27,000 solar masses and the size is pc. The unusually large linewidths of G337.3420.119 are difficult to reconcile with a gravitationally bound system in equilibrium. If our current understanding of the Galaxy's Long Bar is approximately correct, G337.3420.119 cannot be located at its end. Rather, it is associated with a large star-forming complex that contains multiple clumps with large linewidths. If G337.3420.119 is a prototypical cold progenitor for a high-mass cluster, its properties may indicate that the onset of high-mass star cluster formation is dominated by extreme turbulence
Prime movers : mechanochemistry of mitotic kinesins
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
The role of myosin-II in force generation of DRG filopodia and lamellipodia
Differentiating neurons process the mechanical stimulus by exerting the protrusive forces through lamellipodia and filopodia. We used optical tweezers, video imaging and immunocytochemistry to analyze the role of non-muscle myosin-II on the protrusive force exerted by lamellipodia and filopodia from developing growth cones (GCs) of isolated Dorsal Root Ganglia (DRG) neurons. When the activity of myosin-II was inhibited by 30\ue2 ... 1/4M Blebbistatin protrusion/retraction cycles of lamellipodia slowed down and during retraction lamellipodia could not lift up axially as in control condition. Inhibition of actin polymerization with 25\ue2 ...nM Cytochalasin-D and of microtubule polymerization with 500\ue2 ...nM Nocodazole slowed down the protrusion/retraction cycles, but only Cytochalasin-D decreased lamellipodia axial motion. The force exerted by lamellipodia treated with Blebbistatin decreased by 50%, but, surprisingly, the force exerted by filopodia increased by 20-50%. The concomitant disruption of microtubules caused by Nocodazole abolished the increase of the force exerted by filopodia treated with Blebbistatin. These results suggest that; i-Myosin-II controls the force exerted by lamellipodia and filopodia; ii-contractions of the actomyosin complex formed by filaments of actin and myosin have an active role in ruffle formation; iii-myosin-II is an essential component of the structural stability of GCs architecture
Inside-Out Regulation of ICAM-1 Dynamics in TNF-α-Activated Endothelium
Background: During transendothelial migration, leukocytes use adhesion molecules, such as ICAM-1, to adhere to the endothelium. ICAM-1 is a dynamic molecule that is localized in the apical membrane of the endothelium and clusters upon binding to leukocytes. However, not much is known about the regulation of ICAM-1 clustering and whether membrane dynamics are linked to the ability of ICAM-1 to cluster and bind leukocyte integrins. Therefore, we studied the dynamics of endothelial ICAM-1 under non-clustered and clustered conditions. Principal Findings: Detailed scanning electron and fluorescent microscopy showed that the apical surface of endothelial cells constitutively forms small filopodia-like protrusions that are positive for ICAM-1 and freely move within the lateral plane of the membrane. Clustering of ICAM-1, using anti-ICAM-1 antibody-coated beads, efficiently and rapidly recruits ICAM-1. Using fluorescence recovery after photo-bleaching (FRAP), we found that clustering increased the immobile fraction of ICAM-1, compared to non-clustered ICAM-1. This shift required the intracellular portion of ICAM-1. Moreover, biochemical assays showed that ICAM-1 clustering recruited beta-actin and filamin. Cytochalasin B, which interferes with actin polymerization, delayed the clustering of ICAM-1. In addition, we could show that cytochalasin B decreased the immobile fraction of clustered ICAM-1-GFP, but had no effect on non-clustered ICAM-1. Also, the motor protein myosin-II is recruited to ICAM-1 adhesion sites and its inhibition increased the immobile fraction of both non-clustered and clustered ICAM-1. Finally, blocking Rac1 activation, the formation of lipid rafts, myosin-II activity or actin polymerization, but not Src, reduced the adhesive function of ICAM-1, tested under physiological flow conditions. Conclusions: Together, these findings indicate that ICAM-1 clustering is regulated in an inside-out fashion through the actin cytoskeleton. Overall, these data indicate that signaling events within the endothelium are required for efficient ICAM-1-mediated leukocyte adhesio
Replication of TCF4 through Association and Linkage Studies in Late-Onset Fuchs Endothelial Corneal Dystrophy
Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of
the corneal endothelium. Although progress has been made in understanding the
genetic basis of FECD by studying large families in which the phenotype is
transmitted in an autosomal dominant fashion, a recently reported genome-wide
association study identified common alleles at a locus on chromosome 18 near
TCF4 which confer susceptibility to FECD. Here, we report
the findings of our independent validation study for TCF4 using
the largest FECD dataset to date (450 FECD cases and 340 normal controls).
Logistic regression with sex as a covariate was performed for three genetic
models: dominant (DOM), additive (ADD), and recessive (REC). We found
significant association with rs613872, the target marker reported by Baratz
et al.(2010), for all three genetic models (DOM:
P = 9.33×10−35;
ADD:
P = 7.48×10−30;
REC:
P = 5.27×10−6).
To strengthen the association study, we also conducted a genome-wide linkage
scan on 64 multiplex families, composed primarily of affected sibling pairs
(ASPs), using both parametric and non-parametric two-point and multipoint
analyses. The most significant linkage region localizes to chromosome 18 from
69.94cM to 85.29cM, with a peak multipoint
HLOD = 2.5 at rs1145315 (75.58cM) under the DOM
model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents
evidence to support the role of the intronic TCF4 single
nucleotide polymorphism rs613872 in late-onset FECD through both association and
linkage studies
Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase
<p>Abstract</p> <p>Background</p> <p>The <it>piggyBac </it>mobile element is quickly gaining popularity as a tool for the transgenesis of many eukaryotic organisms. By studying the transposase which catalyzes the movement of <it>piggyBac</it>, we may be able to modify this vector system to make it a more effective transgenesis tool. In a previous publication, Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, and Collins FH have proposed the presence of the widespread 'DDE/DDD' motif for <it>piggyBac </it>at amino acid positions D268, D346, and D447.</p> <p>Results</p> <p>This study utilizes directed mutagenesis and plasmid-based mobility assays to assess the importance of these residues as the catalytic core of the <it>piggyBac </it>transposase. We have functionally analyzed individual point-mutations with respect to charge and physical size in all three proposed residues of the 'DDD' motif as well as another nearby, highly conserved aspartate at D450. All of our mutations had a significant effect on excision frequency in S2 cell cultures. We have also aligned the <it>piggyBac </it>transposase to other close family members, both functional and non-functional, in an attempt to identify the most highly conserved regions and position a number of interesting features.</p> <p>Conclusion</p> <p>We found all the designated DDD aspartates reside in clusters of amino acids that conserved among <it>piggyBac </it>family transposase members. Our results indicate that all four aspartates are necessary, to one degree or another, for excision to occur in a cellular environment, but D450 seems to have a tolerance for a glutamate substitution. All mutants tested significantly decreased excision frequency in cell cultures when compared with the wild-type transposase.</p
Assessing the Association of Mitochondrial Genetic Variation With Primary Open-Angle Glaucoma Using Gene-Set Analyses
PURPOSE: Recent studies indicate that mitochondrial proteins may contribute to the pathogenesis of primary open-angle glaucoma (POAG). In this study, we examined the association between POAG and common variations in gene-encoding mitochondrial proteins.
METHODS: We examined genetic data from 3430 POAG cases and 3108 controls derived from the combination of the GLAUGEN and NEIGHBOR studies. We constructed biological-system coherent mitochondrial nuclear-encoded protein gene-sets by intersecting the MitoCarta database with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We examined the mitochondrial gene-sets for association with POAG and with normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) subsets using Pathway Analysis by Randomization Incorporating Structure.
RESULTS: We identified 22 KEGG pathways with significant mitochondrial protein-encoding gene enrichment, belonging to six general biological classes. Among the pathway classes, mitochondrial lipid metabolism was associated with POAG overall (P = 0.013) and with NTG (P = 0.0006), and mitochondrial carbohydrate metabolism was associated with NTG (P = 0.030). Examining the individual KEGG pathway mitochondrial gene-sets, fatty acid elongation and synthesis and degradation of ketone bodies, both lipid metabolism pathways, were significantly associated with POAG (P = 0.005 and P = 0.002, respectively) and NTG (P = 0.0004 and P < 0.0001, respectively). Butanoate metabolism, a carbohydrate metabolism pathway, was significantly associated with POAG (P = 0.004), NTG (P = 0.001), and HTG (P = 0.010).
CONCLUSIONS: We present an effective approach for assessing the contributions of mitochondrial genetic variation to open-angle glaucoma. Our findings support a role for mitochondria in POAG pathogenesis and specifically point to lipid and carbohydrate metabolism pathways as being important
Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases
Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article
Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome
- …
