545 research outputs found

    Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cattle pathogen, <it>Anaplasma marginale</it>, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of <it>A. marginale </it>(reticulated and dense) occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in <it>Dermacentor variabilis </it>ticks in response to infection with <it>A. marginale</it>, were silenced by RNA interference (RNAi) to determine the effect of silencing on the <it>A. marginale </it>developmental cycle. These four genes encoded for putative glutathione S-transferase (GST), salivary selenoprotein M (SelM), H+ transporting lysosomal vacuolar proton pump (vATPase) and subolesin.</p> <p>Results</p> <p>The impact of gene knockdown on <it>A. marginale </it>tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on <it>A. marginale </it>development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen.</p> <p>Conclusion</p> <p>The results of this RNAi and light microscopic analyses of tick tissues infected with <it>A. marginale </it>after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.</p

    Mass Segregation in Globular Clusters

    Get PDF
    We present the results of a new study of mass segregation in two-component star clusters, based on a large number of numerical N-body simulations using our recently developed dynamical Monte Carlo code. Specifically, we follow the dynamical evolution of clusters containing stars with individual masses m_1 as well as a tracer population of objects with individual masses m_2=\mu m_1, using N=10^5 total stars. For heavy tracers, which could represent stellar remnants such as neutron stars or black holes in a globular cluster, we characterize in a variety of ways the tendency for these objects to concentrate in or near the cluster core. In agreement with simple theoretical arguments, we find that the characteristic time for this mass segregation process varies as 1/\mu. For models with very light tracers (\mu <~ 10^-2), which could represent free-floating planets or brown dwarfs, we find the expected depletion of light objects in the cluster core, but also sometimes a significant enhancement in the halo. Using these results we estimate the optical depth to gravitational microlensing by planetary mass objects or brown dwarfs in typical globular clusters. For some initial conditions, the optical depth in the halo due to very low-mass objects could be much greater than that of luminous stars. If we apply our results to M22, using the recent null detection of Sahu, Anderson, & King (2001), we find an upper limit of ~25% at the 63% confidence level for the current mass fraction of M22 in the form of very low-mass objects.Comment: Accepted for publication in ApJ. Minor revisions reflecting the new results of Sahu et al. on M22. 13 pages in emulateapj style, including 9 figures and 3 table

    Thermodynamics of thallium alkanoates I. Heat capacity and thermodynamic functions of thallium(I) n-hexanoate

    Full text link
    The sub-ambient heat capacity of thallium(I) n-hexanoate is characterized by transitions at 203.5 and 208.3 K which show Cp, m/R maxima of about 400 and 2500 and ([Delta]Sm/R)'s of 1.03 and 1.07. Both appear to be essentially first order and show typical under-cooling phenomena. The heat capacities are in excellent accord with the d.s.c. values of Fernandez-Martin, Lopez de la Fuente, and Cheda over the common range of super-ambient values. At T = 298.15 K the values of {Smo(T)-Smo(0)}/R, {Hmo(T)-Hmo(0)}/R, and -{Gmo(T)-Hmo(0)}/RT are 39.06, 5880 K, and 19.33. Smoothed thermodynamic functions are tabulated through melting.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25683/1/0000237.pd

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Thermodynamics of thallium alkanoates III. Heat capacity and thermodynamic functions of thallium(I) n-tetradecanoate from 7 to 450 K

    Get PDF
    The heat capacity of thallium(I) n-tetradecanoate was measured by adiabatic calorimetry to 350 K and by d.s.c. from 235 through 460 K. Good agreement between the methods was obtained within the common temperature range. Several phases were observed in the sample. Two solid-to-solid transitions were found, a very sharp one at 318.5 K (Cp, m/R for the maximum is about 104; enthalpy ([Delta]trsHm/R) increments are 1913.5 K and 6.00, respectively) and the other at 378.0 K: [Delta]trsHm/R = 346 K, [Delta]trsSm/R = 0.92. Between these transitions there is a broad diffuse hump whose maximum is at about 360 K. The sample melts into a liquid-crystal phase at 396.3 K: [Delta]trsHm/R = 754 K, [Delta]trsSm/R = 1.9. Finally, "clearing" occurs at 460.7 K: [Delta]trsHm/R = 201 K, [Delta]trsSm/R = 0.44. Smoothed thermophysical properties are tabulated through "clearing".Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26945/1/0000511.pd

    Front Matter

    Get PDF
    The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.This research was supported by the Consejería de Educación, Cultura y Deportes, JCCM, Spain, project CCM17-PIC-036 (SBPLY/17/180501/000185). JJV was supported by Project FIT (Pharmacology, Immunotherapy, nanoToxicology), funded by the European Regional Development Fund.Peer Reviewe

    Tick Histamine Release Factor Is Critical for Ixodes scapularis Engorgement and Transmission of the Lyme Disease Agent

    Get PDF
    Ticks are distributed worldwide and affect human and animal health by transmitting diverse infectious agents. Effective vaccines against most tick-borne pathogens are not currently available. In this study, we characterized a tick histamine release factor (tHRF) from Ixodes scapularis and addressed the vaccine potential of this antigen in the context of tick engorgement and B. burgdorferi transmission. Results from western blotting and quantitative Reverse Transcription-PCR showed that tHRF is secreted in tick saliva, and upregulated in Borrelia burgdorferi-infected ticks. Further, the expression of tHRF was coincident with the rapid feeding phase of the tick, suggesting a role for tHRF in tick engorgement and concomitantly, for efficient B. burgdorferi transmission. Silencing tHRF by RNA interference (RNAi) significantly impaired tick feeding and decreased B. burgdorferi burden in mice. Interfering with tHRF by actively immunizing mice with recombinant tHRF, or passively transferring tHRF antiserum, also markedly reduced the efficiency of tick feeding and B. burgdorferi burden in mice. Recombinant tHRF was able to bind to host basophils and stimulate histamine release. Therefore, we speculate that tHRF might function in vivo to modulate vascular permeability and increase blood flow to the tick bite-site, facilitating tick engorgement. These findings suggest that blocking tHRF might offer a viable strategy to complement ongoing efforts to develop vaccines to block tick feeding and transmission of tick-borne pathogens
    corecore