7,360 research outputs found

    Bone mineral measurement from Apollo experiment M-078

    Get PDF
    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed

    Spatial properties of entangled photon pairs generated in nonlinear layered structures

    Full text link
    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also structures efficiently generated photon pairs showing anti-bunching and anti-coalescence can be obtained. Three reasons for splitting the correlated area in photonic-band-gap structures are revealed: zig-zag movement of photons inside the structure, spatial symmetry and polarization-dependent properties. Also spectral splitting can be observed in these structures.Comment: 13 pages, 17 figure

    Two-dimensional protein crystallization via metal-ion coordination by naturally occurring surface histidines

    Get PDF
    A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids

    Emission of photon pairs at discontinuities of nonlinearity in spontaneous parametric down-conversion

    Full text link
    In order to fulfil the continuity requirements for electric- and magnetic-field amplitudes at discontinuities of chi2 nonlinearity additional photon pairs have to be emitted in the area of discontinuity. Generalized two-photon spectral amplitudes can be used to describe properties of photon pairs generated in this process that we call surface spontaneous parametric down-conversion. The spectral structure of such photon pairs is similar to that derived for photon pairs generated in the volume. Surface and volume contributions to spontaneous down-conversion can be comparable as an example of nonlinear layered structures shows.Comment: 11 pages, 8 figure

    Two-photon interaction between trapped ions and cavity fields

    Get PDF
    In this paper, we generalize the ordinary two-photon Jaynes-Cummings model (TPJCM) by considering the atom (or ion) to be trapped in a simple harmonic well. A typical setup would be an optical cavity containing a single ion in a Paul trap. Due to the inclusion of atomic vibrational motion, the atom-field coupling becomes highly nonlinear what brings out quite different behaviors for the system dynamics when compared to the ordinary TPJCM. In particular, we derive an effective two-photon Hamiltonian with dependence on the number operator of the ion's center-of-mass motion. This dependence occurs both in the cavity induced Stark-shifs and in the ion-field coupling, and its role in the dynamics is illustrated by showing the time evolution of the probability of occupation of the electronic levels for simple initial preparations of the state of the system.Comment: 9 pages, 10 figure

    Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields

    Full text link
    An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings will be three orders of magnitude more precise than previous measurements. Moreover, from a comparison of measurements of the hyperfine splittings in hydrogen- and lithium-like ions of the same isotope, QED effects at high electromagnetic fields can be determined within a few percent. Several candidate ions suited for these laser spectroscopy studies are presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics (2006

    AN EVALUATION OF ELECTRONIC MEETING SYSTEMS TO SUPPORT STRATEGIC MANAGEMENT

    Get PDF
    Strategic management, defined as the overall process of formulating and implementing goals, policies and plans of organizational strategy, is an important organizational task that is typically performed by groups of managers. While information technology has long been used to support strategic management, it has only recently been used to support the group processes of strategic management through the provision of Electronic Meeting Systems (EMS). An EMS can affect meetings by providing process support, process structure, task structure, and task support. Process support improves communication among group members (via an electronic communication channel), while process structure directs the pattern or content of discussion (via an agenda). Task structure refers to the use of a structured technique to analyze the task (a mathematical or conceptual model), while task support refers to the provision of information or computation support without additional structure (a data base or calculator). The objective of this paper is to evaluate the capability of EMS to support strategic management. The results of a series of seventeen case studies indicate that use of EMS technology can enhance six capabilities that prior research has linked to increased strategic management success. Process support and process structure were perceived to be more important than task structure and task support in contributing to success. An analysis of less successful meetings suggests that a lack of communication between the group leader/meeting organizer and meeting participants and extenuating external circumstances were primary causes for the lack of success

    Covalent Linkages of Molecules and Proteins to Si-H Surfaces Formed by Disulfide Reduction.

    Full text link
    Thiols and disulfide contacts have been, for decades, key for connecting organic molecules to surfaces and nanoclusters as they form self-assembled monolayers (SAMs) on metals such as gold (Au) under mild conditions. In contrast, they have not been similarly deployed on Si owing to the harsh conditions required for monolayer formation. Here, we show that SAMs can be simply formed by dipping Si-H surfaces into dilute solutions of organic molecules or proteins comprising disulfide bonds. We demonstrate that S-S bonds can be spontaneously reduced on Si-H, forming covalent Si-S bonds in the presence of traces of water, and that this grafting can be catalyzed by electrochemical potential. Cyclic disulfide can be spontaneously reduced to form complete monolayers in 1 h, and the reduction can be catalyzed electrochemically to form full surface coverages within 15 min. In contrast, the kinetics of SAM formation of the cyclic disulfide molecule on Au was found to be three-fold slower than that on Si. It is also demonstrated that dilute thiol solutions can form monolayers on Si-H following oxidation to disulfides under ambient conditions; the supply of too much oxygen, however, inhibits SAM formation. The electron transfer kinetics of the Si-S-enabled SAMs on Si-H is comparable to that on Au, suggesting that Si-S contacts are electrically transmissive. We further demonstrate the prospect of this spontaneous disulfide reduction by forming a monolayer of protein azurin on a Si-H surface within 1 h. The direct reduction of disulfides on Si electrodes presents new capabilities for a range of fields, including molecular electronics, for which highly conducting SAM-electrode contacts are necessary and for emerging fields such as biomolecular electronics as disulfide linkages could be exploited to wire proteins between Si electrodes, within the context of the current Si-based technologies
    • …
    corecore