224 research outputs found

    Influence of Varying Rates of Lime and Nitrogen on Winter Wheat Production

    Get PDF
    Agronom

    Radiation from a uniformly accelerating harmonic oscillator

    Full text link
    We consider a radiation from a uniformly accelerating harmonic oscillator whose minimal coupling to the scalar field changes suddenly. The exact time evolutions of the quantum operators are given in terms of a classical solution of a forced harmonic oscillator. After the jumping of the coupling constant there occurs a fast absorption of energy into the oscillator, and then a slow emission follows. Here the absorbed energy is independent of the acceleration and proportional to the log of a high momentum cutoff of the field. The emitted energy depends on the acceleration and also proportional to the log of the cutoff. Especially, if the coupling is comparable to the natural frequency of the detector (e2/(4m)∌ω0e^2/(4m) \sim \omega_0) enormous energies are radiated away from the oscillator.Comment: 26 pages, 1 eps figure, RevTeX, minor correction in grammar, add a discussio

    Acoustic black holes for relativistic fluids

    Full text link
    We derive a new acoustic black hole metric from the Abelian Higgs model. In the non-relativistic limit, while the Abelian Higgs model becomes the Ginzburg-Landau model, the metric reduces to an ordinary Unruh type. We investigate the possibility of using (type I and II) superconductors as the acoustic black holes. We propose to realize experimental acoustic black holes by using spiral vortices solutions from the Navier-stokes equation in the non-relativistic classical fluids.Comment: 16 pages. typos corrected, contents expande

    A Liquid Model Analogue for Black Hole Thermodynamics

    Get PDF
    We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure

    Towards a Singularity-Proof Scheme in Numerical Relativity

    Full text link
    Progress in numerical relativity has been hindered for 30 years because of the difficulties of avoiding spacetime singularities in numerical evolution. We propose a scheme which excises a region inside an apparent horizon containing the singularity. Two major ingredients of the scheme are the use of a horizon-locking coordinate and a finite differencing which respects the causal structure of the spacetime. Encouraging results of the scheme in the spherical collapse case are given.Comment: 9 page

    Stochastically Fluctuating Black-Hole Geometry, Hawking Radiation and the Trans-Planckian Problem

    Get PDF
    We study the propagation of null rays and massless fields in a black hole fluctuating geometry. The metric fluctuations are induced by a small oscillating incoming flux of energy. The flux also induces black hole mass oscillations around its average value. We assume that the metric fluctuations are described by a statistical ensemble. The stochastic variables are the phases and the amplitudes of Fourier modes of the fluctuations. By averaging over these variables, we obtain an effective propagation for massless fields which is characterized by a critical length defined by the amplitude of the metric fluctuations: Smooth wave packets with respect to this length are not significantly affected when they are propagated forward in time. Concomitantly, we find that the asymptotic properties of Hawking radiation are not severely modified. However, backward propagated wave packets are dissipated by the metric fluctuations once their blue shifted frequency reaches the inverse critical length. All these properties bear many resemblences with those obtained in models for black hole radiation based on a modified dispersion relation. This strongly suggests that the physical origin of these models, which were introduced to confront the trans-Planckian problem, comes from the fluctuations of the black hole geometry.Comment: 32 page

    Quantum Logic with a Single Trapped Electron

    Get PDF
    We propose the use of a trapped electron to implement quantum logic operations. The fundamental controlled-NOT gate is shown to be feasible. The two quantum bits are stored in the internal and external (motional) degrees of freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.

    Quantum Geometrodynamics I: Quantum-Driven Many-Fingered Time

    Full text link
    The classical theory of gravity predicts its own demise -- singularities. We therefore attempt to quantize gravitation, and present here a new approach to the quantization of gravity wherein the concept of time is derived by imposing the constraints as expectation-value equations over the true dynamical degrees of freedom of the gravitational field -- a representation of the underlying anisotropy of space. This self-consistent approach leads to qualitatively different predictions than the Dirac and the ADM quantizations, and in addition, our theory avoids the interpretational conundrums associated with the problem of time in quantum gravity. We briefly describe the structure of our functional equations, and apply our quantization technique to two examples so as to illustrate the basic ideas of our approach.Comment: 11, (No Figures), (Typeset using RevTeX

    Problem of Time in Quantum Gravity

    Full text link
    The Problem of Time occurs because the `time' of GR and of ordinary Quantum Theory are mutually incompatible notions. This is problematic in trying to replace these two branches of physics with a single framework in situations in which the conditions of both apply, e.g. in black holes or in the very early universe. Emphasis in this Review is on the Problem of Time being multi-faceted and on the nature of each of the eight principal facets. Namely, the Frozen Formalism Problem, Configurational Relationalism Problem (formerly Sandwich Problem), Foliation Dependence Problem, Constraint Closure Problem (formerly Functional Evolution Problem), Multiple Choice Problem, Global Problem of Time, Problem of Beables (alias Problem of Observables) and Spacetime Reconstruction/Replacement Problem. Strategizing in this Review is not just centred about the Frozen Formalism Problem facet, but rather about each of the eight facets. Particular emphasis is placed upon A) relationalism as an underpinning of the facets and as a selector of particular strategies (especially a modification of Barbour relationalism, though also with some consideration of Rovelli relationalism). B) Classifying approaches by the full ordering in which they embrace constrain, quantize, find time/history and find observables, rather than only by partial orderings such as "Dirac-quantize". C) Foliation (in)dependence and Spacetime Reconstruction for a wide range of physical theories, strategizing centred about the Problem of Beables, the Patching Approach to the Global Problem of Time, and the role of the question-types considered in physics. D) The Halliwell- and Gambini-Porto-Pullin-type combined Strategies in the context of semiclassical quantum cosmology.Comment: Invited Review: 26 pages including 2 Figures. This v2 has a number of minor improvements and correction
    • 

    corecore