40 research outputs found

    Unexpected features of branched flow through high-mobility two-dimensional electron gases

    Full text link
    GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable electronic states, and serve as the basis for fast transistors, research on electrons in nanostructures, and prototypes of quantum-computing schemes. All these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with low-temperature mean free paths ranging from microns to hundreds of microns. Here we study how disorder affects the spatial structure of electron transport by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities range over an order of magnitude. As expected, electrons flow along narrow branches that we find remain straight over a distance roughly proportional to the mean free path. We also observe two unanticipated phenomena in high-mobility samples. In our highest-mobility sample we observe an almost complete absence of sharp impurity or defect scattering, indicated by the complete suppression of quantum coherent interference fringes. Also, branched flow through the chaotic potential of a high-mobility sample remains stable to significant changes to the initial conditions of injected electrons.Comment: 22 pages, 4 figures, 1 tabl

    Biomarkers of exposure and effect—interpretation in human risk assessment

    Get PDF
    The effect of exposure to carcinogenic polycyclic aromatic hydrocarbons adsorbed onto respirable air particles (PM2.5, diameter < 2.5 Όm) on DNA adducts and chromosomal aberrations was repeatedly studied in Prague, Czech Republic, in groups of policemen working in the downtown area and in bus drivers. Personal exposure was evaluated using personal samplers during working shifts. DNA adducts were analyzed in lymphocytes by the 32P-postlabeling assay and chromosomal aberrations were analyzed by conventional cytogenetic analysis and fluorescent in situ hybridization (FISH). The impact of environmental pollution on DNA adducts and chromosomal aberrations was studied in a total of 950 subjects. Our results suggest that the environmental exposure of nonsmokers to concentrations higher than 1 ng benzo[a]pyrene/m3 represents a risk of DNA damage, as indicated by an increase in DNA adducts and the genomic frequency of translocations determined by FISH

    Quantitative analysis of protein S-acylation site dynamics using site-specific acyl-biotin exchange (ssABE).

    Get PDF
    Protein S-acylation (palmitoylation) is a reversible lipid modification that is increasingly recognized as an important regulator of protein function, including membrane association, trafficking, and subcellular localization. Most proteomic methods to study palmitoylation allow characterization of putative palmitoylated proteins but do not permit identification of individual sites of palmitoylation. We have recently adapted the Acyl-Biotin Exchange (ABE) method that is routinely used for palmitoyl-proteome characterization, to permit global S-acylation site analysis. This site-specific ABE (ssABE) protocol, when combined with SILAC-based quantification, allows both the large-scale identification of palmitoylation sites and quantitative profiling of palmitoylation site changes. This approach enables palmitoylation to be studied at a systems level comparable to other more intensively studied post-translational modifications

    In vivo STED microscopy visualizes morphological changes of large PSD95 assemblies over several hours in the mouse visual cortex

    Get PDF
    Abstract The post-synaptic density (PSD) is an electron dense region consisting of ~1000 proteins, found at the postsynaptic membrane of excitatory synapses, which varies in size depending upon synaptic strength. PSD95 is an abundant scaffolding protein in the PSD and assembles a family of supercomplexes comprised of neurotransmitter receptors, ion channels, as well as signalling and structural proteins. We use superresolution STED (STimulated Emission Depletion) nanoscopy to determine the size and shape of PSD95 in the anaesthetised mouse visual cortex. Adult knock-in mice expressing eGFP fused to the endogenous PSD95 protein were imaged at time points from 1 min to 6 h. Superresolved large assemblies of PSD95 show different sub-structures; most large assemblies were ring-like, some horse-shoe or figure-8 shaped, and shapes were continuous or made up of nanoclusters. The sub-structure appeared stable during the shorter (minute) time points, but after 1 h, more than 50% of the large assemblies showed a change in sub-structure. Overall, these data showed a sub-morphology of large PSD95 assemblies which undergo changes within the 6 hours of observation in the anaesthetised mouse

    DNA methylation profiles in a group of workers occupationally exposed to nanoparticles

    Get PDF
    The risk of exposure to nanoparticles (NPs) has rapidly increased during the last decade due to the vast use of nanomaterials (NMs) in many areas of human life. Despite this fact, human biomonitoring studies focused on the effect of NP exposure on DNA alterations are still rare. Furthermore, there are virtually no epigenetic data available. In this study, we investigated global and gene-specific DNA methylation profiles in a group of 20 long-term (mean 14.5 years) exposed, nanocomposite, research workers and in 20 controls. Both groups were sampled twice/day (pre-shift and post-shift) in September 2018. We applied Infinium Methylation Assay, using the Infinium MethylationEPIC BeadChips with more than 850,000 CpG loci, for identification of the DNA methylation pattern in the studied groups. Aerosol exposure monitoring, including two nanosized fractions, was also performed as proof of acute NP exposure. The obtained array data showed significant differences in methylation between the exposed and control groups related to long-term exposure, specifically 341 CpG loci were hypomethylated and 364 hypermethylated. The most significant CpG differences were mainly detected in genes involved in lipid metabolism, the immune system, lung functions, signaling pathways, cancer development and xenobiotic detoxification. In contrast, short-term acute NP exposure was not accompanied by DNA methylation changes. In summary, long-term (years) exposure to NP is associated with DNA epigenetic alterations

    Nano-TiO2 stability in medium and size as important factors of toxicity in macrophage-like cells

    No full text
    TiO2 along with nano-TiO2 are commonly found in consumer products. In vivo studies have observed an accumulation of nano-TiO2 in macrophages. However, characteristics of nano-TiO2 determining toxicity remain unclear. In our study, the cytotoxic effects of 14 diverse nano-TiO2 on THP-1 macrophage-like cells were measured by 3 cytotoxicity assays (MTS, WST-1 and LDH). Total averaged cytotoxicity was calculated using principal component analysis. Characteristics of all 14 nano-TiO2 included hydrodynamic diameter, zeta potential, shape, polydispersity index (PDI) and concentration; moreover, crystal form, specific surface area and crystallite size were measured for 10 nano-TiO2. The variables affecting cytotoxicity were chosen using LASSO (least absolute shrinkage and selection operator). Except for concentration, PDI in media measured within 1 h after preparation of the nanomaterial dispersion was selected as a variable affecting cytotoxicity: stable dispersion resulted in higher cytotoxic effects. Crystallite size has been shown to have nonlinear effects (particles of sizes between 20 and 60 nm were cytotoxic while smaller and larger ones were not) and thus it has been excluded from LASSO. The shape (particles/fibre) and crystal form did not affect the cytotoxicity. PDI and the nonlinear effect of size could be an explanation for the inconsistencies of the cytotoxicity of nano-TiO2 in various studies.Web of Science5418817

    Relative levels of XPE, XPC and XPA mRNAs.

    No full text
    <p>The levels of mRNAs were analyzed after the 6 h treatment of HEL12469 cells with benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) in the absence (–S9) and presence (+S9) of the microsomal S9 fraction. Mean ± SD values from three independent cell treatments are shown, asterisks denote a significant (p<0.05) increase/decrease of mRNA levels. The baseline mRNA level after treatment of the cells with DMSO is represented by a bold horizontal line.</p

    Relative levels of XPE, XPC and XPA proteins in lysates of HEL12469 cells.

    No full text
    <p>The cells were treated with B[a]P and EOMs for 24 h. The data represent mean protein levels relative to the control sample from two independent experiments. P–W = Prague-winter, O–W = Ostrava-winter, P–S = Prague-summer, O–S = Ostrava-summer.</p

    Relative levels of unscheduled DNA synthesis (UDS).

    No full text
    <p>UDS in HEL12469 cells was studied after 24 h treatment with benzo[a]pyrene (B[a]P) and extractable organic matter (EOMs) in the absence (–S9) and presence (+S9) of the S9 microsomal fraction. Mean ± SD UDS values relative to the DMSO-treated control are shown, asterisks denote a significant (p<0.05) increase/decrease in the activity of UDS. The baseline levels of UDS in cells treated with DMSO is represented by a bold horizontal line. Each mean UDS value is based on the analysis of 700–2500 cells.</p
    corecore