138 research outputs found

    A solvable model for the diffusion and reaction of neurotransmitters in a synaptic junction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diffusion and reaction of the transmitter acetylcholine in neuromuscular junctions and the diffusion and binding of Ca<sup>2+ </sup>in the dyadic clefts of ventricular myocytes have been extensively modeled by Monte Carlo simulations and by finite-difference and finite-element solutions. However, an analytical solution that can serve as a benchmark for testing these numerical methods has been lacking.</p> <p>Result</p> <p>Here we present an analytical solution to a model for the diffusion and reaction of acetylcholine in a neuromuscular junction and for the diffusion and binding of Ca<sup>2+ </sup>in a dyadic cleft. Our model is similar to those previously solved numerically and our results are also qualitatively similar.</p> <p>Conclusion</p> <p>The analytical solution provides a unique benchmark for testing numerical methods and potentially provides a new avenue for modeling biochemical transport.</p

    Fast construction of irreducible polynomials over finite fields

    Get PDF
    International audienceWe present a randomized algorithm that on input a finite field KK with qq elements and a positive integer dd outputs a degree dd irreducible polynomial in K[x]K[x]. The running time is d1+o(1)×(logq)5+o(1)d^{1+o(1)} \times (\log q)^{5+o(1)} elementary operations. The o(1)o(1) in d1+o(1)d^{1+o(1)} is a function of dd that tends to zero when dd tends to infinity. And the o(1)o(1) in (logq)5+o(1)(\log q)^{5+o(1)} is a function of qq that tends to zero when qq tends to infinity. In particular, the complexity is quasi-linear in the degree dd

    Prospective Volumetric Assessment of the Liver on a Personal Computer by Nonradiologists Prior to Partial Hepatectomy

    Get PDF
    Ó The Author(s) 2010. This article is published with open access at Springerlink.com Background A small remnant liver volume is an important risk factor for posthepatectomy liver failure. ImageJ and OsiriX Ò are both free, open-source image processing software packages. The aim of the present study was to compare ImageJ and OsiriX Ò in performing prospective computed tomography (CT) volumetric analysis of the liver on a personal computer (PC) in patients undergoing major liver resection. Methods Patients scheduled for a right hemihepatectomy were eligible for inclusion. Two surgeons and one surgical trainee measured volumes of total liver, tumor, and future resection specimen prospectively with ImageJ and OsiriX Ò. A radiologist also measured these volumes with CT scanner-linked Aquarius iNtuition Ò software. Resection volumes were compared with the actual weights of the live

    A Role for Rebinding in Rapid and Reliable T Cell Responses to Antigen

    Get PDF
    Experimental work has shown that T cells of the immune system rapidly and specifically respond to antigenic molecules presented on the surface of antigen-presenting-cells and are able to discriminate between potential stimuli based on the kinetic parameters of the T cell receptor-antigen bond. These antigenic molecules are presented among thousands of chemically similar endogenous peptides, raising the question of how T cells can reliably make a decision to respond to certain antigens but not others within minutes of encountering an antigen presenting cell. In this theoretical study, we investigate the role of localized rebinding between a T cell receptor and an antigen. We show that by allowing the signaling state of individual receptors to persist during brief unbinding events, T cells are able to discriminate antigens based on both their unbinding and rebinding rates. We demonstrate that T cell receptor coreceptors, but not receptor clustering, are important in promoting localized rebinding, and show that requiring rebinding for productive signaling reduces signals from a high concentration of endogenous pMHC. In developing our main results, we use a relatively simple model based on kinetic proofreading. However, we additionally show that all our results are recapitulated when we use a detailed T cell receptor signaling model. We discuss our results in the context of existing models and recent experimental work and propose new experiments to test our findings

    Surgical strategies for treatment of malignant pancreatic tumors: extended, standard or local surgery?

    Get PDF
    Tumor related pancreatic surgery has progressed significantly during recent years. Pancreatoduodenectomy (PD) with lymphadenectomy, including vascular resection, still presents the optimal surgical procedure for carcinomas in the head of pancreas. For patients with small or low-grade malignant neoplasms, as well as small pancreatic metastases located in the mid-portion of pancreas, central pancreatectomy (CP) is emerging as a safe and effective option with a low risk of developing de-novo exocrine and/or endocrine insufficiency. Total pancreatectomy (TP) is not as risky as it was years ago and can nowadays safely be performed, but its indication is limited to locally extended tumors that cannot be removed by PD or distal pancreatectomy (DP) with tumor free surgical margins. Consequently, TP has not been adopted as a routine procedure by most surgeons. On the other hand, an aggressive attitude is required in case of advanced distal pancreatic tumors, provided that safe and experienced surgery is available. Due to the development of modern instruments, laparoscopic operations became more and more successful, even in malignant pancreatic diseases. This review summarizes the recent literature on the abovementioned topics

    Quantum algorithms for algebraic problems

    Full text link
    Quantum computers can execute algorithms that dramatically outperform classical computation. As the best-known example, Shor discovered an efficient quantum algorithm for factoring integers, whereas factoring appears to be difficult for classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article reviews the current state of quantum algorithms, focusing on algorithms with superpolynomial speedup over classical computation, and in particular, on problems with an algebraic flavor.Comment: 52 pages, 3 figures, to appear in Reviews of Modern Physic

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore