77 research outputs found

    Monolayer semiconductor nanocavity lasers with ultralow thresholds

    Get PDF
    preprin

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Timing, rates and spectra of human germline mutation.

    Get PDF
    Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations

    Phonon-driven spin-Floquet magneto-valleytronics in MoS2

    Get PDF
    Two-dimensional materials equipped with strong spin-orbit coupling can display novel electronic, spintronic, and topological properties originating from the breaking of time or inversion symmetry. A lot of interest has focused on the valley degrees of freedom that can be used to encode binary information. By performing ab initio time-dependent density functional simulation on MoS2, here we show that the spin is not only locked to the valley momenta but strongly coupled to the optical E '' phonon that lifts the lattice mirror symmetry. Once the phonon is pumped so as to break time-reversal symmetry, the resulting Floquet spectra of the phonon-dressed spins carry a net out-of-plane magnetization (approximate to 0.024 mu(B) for single-phonon quantum) even though the original system is non-magnetic. This dichroic magnetic response of the valley states is general for all 2H semiconducting transition-metal dichalcogenides and can be probed and controlled by infrared coherent laser excitation

    The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2

    Get PDF
    Monolayer transition metal dichalcogenides (TMDs) hold great promise for future information processing applications utilizing a combination of electron spin and valley pseudospin. This unique spin system has led to observation of the valley Zeeman effect in neutral and charged excitonic resonances under applied magnetic fields. However, reported values of the trion valley Zeeman splitting remain highly inconsistent across studies. Here, we utilize high quality hBN encapsulated monolayer WSe2 to enable simultaneous measurement of both intervalley and intravalley trion photoluminescence. We find the valley Zeeman splitting of each trion state to be describable only by a combination of three distinct g-factors, one arising from the exciton-like valley Zeeman effect, the other two, trion specific, g-factors associated with recoil of the excess electron. This complex picture goes significantly beyond the valley Zeeman effect reported for neutral excitons, and eliminates the ambiguity surrounding the magneto-optical response of trions in tungsten based TMD monolayers

    Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging

    Get PDF
    Chemical vapour deposition (CVD) growth is capable of producing multiple single-crystal islands of atomically thin transition metal dichalcogenides (TMDs) over large areas. Subsequent merging of perfectly epitaxial domains can lead to single-crystal monolayer sheets, a step towards scalable production of high quality TMDs. For CVD growth to be effectively harnessed for such production it is necessary to be able to rapidly assess the quality of material across entire large area substrates. To date, characterisation has been limited to sub-0.1-mm2 areas, where the properties measured are not necessarily representative of an entire sample. Here, we apply photoluminescence (PL) imaging and computer vision techniques to create an automated analysis for large area samples of monolayer TMDs, measuring the properties of island size, density of islands, relative PL intensity and homogeneity, and orientation of triangular domains. The analysis is applied to ×20 magnification optical microscopy images that completely map samples of WSe2 on hBN, 5.0 mm × 5.0 mm in size, and MoSe2–WS2 on SiO2/Si, 11.2 mm × 5.8 mm in size. Two prevailing orientations of epitaxial growth were observed in WSe2 grown on hBN and four predominant orientations were observed in MoSe2, initially grown on c-plane sapphire. The proposed analysis will greatly reduce the time needed to study freshly synthesised material over large area substrates and provide feedback to optimise growth conditions, advancing techniques to produce high quality TMD monolayer sheets for commercial applications

    Single Defect Light-Emitting Diode in a van der Waals Heterostructure

    No full text
    Single defects in monolayer WSe<sub>2</sub> have been shown to be a new class of single photon emitters and have potential applications in quantum technologies. Whereas previous work relied on optical excitation of single defects in isolated WSe<sub>2</sub> monolayers, in this work we demonstrate electrically driven single defect light emission by using both vertical and lateral van der Waals heterostructure devices. In both device geometries, we use few layer graphene as the source and drain and hexagonal boron nitride as the dielectric spacer layers for engineered tunneling contacts. In addition, the lateral devices utilize a split back gate design to realize an electrostatically defined p–i–n junction. At low current densities and low temperatures (∼5 K), we observe narrow spectral lines in the electroluminescence (EL) whose properties are consistent with optically excited defect bound excitons. We show that the emission originates from spatially localized regions of the sample, and the EL spectrum from single defects has a doublet with the characteristic exchange splitting and linearly polarized selection rules. All are consistent with previously reported single photon-emitters in optical measurements. Our results pave the way for on-chip and electrically driven single photon sources in two-dimensional semiconductors for quantum technology applications

    As thin as it gets

    No full text
    corecore