180 research outputs found

    Development of a Digital Signal Analysis System for Minicomputers

    Get PDF
    Mechanical Engineerin

    Computer Implementation of Optimal Multlvariable Controller Design in the Frequency Domain

    Get PDF
    Mechanical Engineerin

    Postnatal Experiences Influence How the Brain Integrates Information from Different Senses

    Get PDF
    Sensory processing disorder (SPD) is characterized by anomalous reactions to, and integration of, sensory cues. Although the underlying etiology of SPD is unknown, one brain region likely to reflect these sensory and behavioral anomalies is the superior colliculus (SC), a structure involved in the synthesis of information from multiple sensory modalities and the control of overt orientation responses. In the present review we describe normal functional properties of this structure, the manner in which its individual neurons integrate cues from different senses, and the overt SC-mediated behaviors that are believed to manifest this “multisensory integration.” Of particular interest here is how SC neurons develop their capacity to engage in multisensory integration during early postnatal life as a consequence of early sensory experience, and the intimate communication between cortex and the midbrain that makes this developmental process possible

    In vitro volatile organic compound profiling using GCGC-TOFMS to differentiate bacteria associated with lung infections: A proof-of-concept study

    Full text link
    © 2016 IOP Publishing Ltd. Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCGC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further facilitate the production of diagnostic tools for the early detection of bacterial lung infections

    Bringing lipid bilayers into shape

    Get PDF
    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research

    Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    Get PDF
    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases

    A Descriptive Morphology of the Ant Genus Procryptocerus (Hymenoptera: Formicidae)

    Get PDF
    Morphology is the most direct approach biologists have to recognize uniqueness of insect species as compared to close relatives. Ants of the genus Procryptocerus possess important morphologic characters yet have not been explored for use in a taxonomic revision. The genus is characterized by the protrusion of the clypeus forming a broad nasus and antennal scrobes over the eyes. The toruli are located right posterior to the flanks of the nasus opposite to each other. The vertex is deflexed posteriorly in most species. An in-group comparison of the external morphology is presented focusing on the workers. A general morphology for gynes and males is also presented. Previously mentioned characters as well as new ones are presented, and their character states in different species are clarified. For the metasoma a new system of ant metasomal somite nomenclature is presented that is applicable to Aculeata in general. Finally, a Glossary of morphological terms is offered for the genus (available online). Most of the terminology can be used in other members of the Formicidae and Aculeata

    Severe loss of mechanical efficiency in COVID‐19 patients

    Get PDF
    Background: There is limited information about the impact of coronavirus disease (COVID-19) on the muscular dysfunction, despite the generalized weakness and fatigue that patients report after overcoming the acute phase of the infection. This study aimed to detect impaired muscle efficiency by evaluating delta efficiency (DE) in patients with COVID-19 compared with subjects with chronic obstructive pulmonary disease (COPD), ischaemic heart disease (IHD), and control group (CG). Methods: A total of 60 participants were assigned to four experimental groups: COVID-19, COPD, IHD, and CG (n = 15 each group). Incremental exercise tests in a cycle ergometer were performed to obtain peak oxygen uptake (VO2 peak). DE was obtained from the end of the first workload to the power output where the respiratory exchange ratio was 1. Results: A lower DE was detected in patients with COVID-19 and COPD compared with those in CG (P ≤ 0.033). However, no significant differences were observed among the experimental groups with diseases (P > 0.05). Lower VO2 peak, peak ventilation, peak power output, and total exercise time were observed in the groups with diseases than in the CG (P < 0.05). A higher VO2 , ventilation, and power output were detected in the CG compared with those in the groups with diseases at the first and second ventilatory threshold (P < 0.05). A higher power output was detected in the IHD group compared with those in the COVID-19 and COPD groups (P < 0.05) at the first and second ventilatory thresholds and when the respiratory exchange ratio was 1. A significant correlation (P < 0.001) was found between the VO2 peak and DE and between the peak power output and DE (P < 0.001). Conclusions: Patients with COVID-19 showed marked mechanical inefficiency similar to that observed in COPD and IHD patients. Patients with COVID-19 and COPD showed a significant decrease in power output compared to IHD during pedalling despite having similar response in VO2 at each intensity. Resistance training should be considered during the early phase of rehabilitation

    Biochemical indices and life traits of loggerhead turtles (Caretta caretta) from Cape Verde Islands

    Get PDF
    The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study.The authors thank the Cape Verde Ministry of Environment (General Direction for the Environment), INDP (National Fisheries Institution), the Canary Islands Government (D.G. Africa and D.G. Research and Universities), ICCM (Canarian Institution for Marine Sciences), the Andalusian Government (Andalusian Environmental Office) and AEGINA PROJECT (INTERREG IIIB) for funding and hosting them during this study. The authors also thank the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme, and national funds through FCT - PEst-C/MAR/LA0015/2011 for supporting the biochemical analysis
    corecore