i
COMPUTER IMPLEMENTATION OF OPTIMAL MULTIVARIABLE

CONTROLLER DESIGN IN THE FREQUENCY DOMAIN

»

By
JOHN EDWARD PERRAULT, JR.
. u

Bachelor 6f Science in Mechanical Engineering
University of Tulsa
Tulsa, Oklahoma

1975

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1977 .

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1981

P

7718515
981D
P 45de
copr

UM ERSITY

LIBRARY

~\‘\n‘~‘__.-—.."'—

COMPUTER IMPLEMENTATION OF OPTIMAL MULTIVARIABLE

CONTROLLER DESIGN IN THE FREQUENCY DOMAIN

Thesis Approved:

Thesis Adviser

*Dean of the Graduate College

103082¢ i

ACKNOWLEDGEMENTS

Financial.subport for this reséarch was provided by the Air Force
IWeabons Laboratory (AFWL), Air Force Systems Command, K}rt]and Air Force
Base, New Mexico, under Contract F29601-78-C-0038. Models for the ex-
amples of Chapter [V are from the Airborne Pointing and Tracking System
currently under development at AFWL.

I thank my advisor, Dr. Lynn R. Ebbesen, who provided constant en-
'couragement throughout my graduate studies at Oklahoma State University
and many enjoyable and enlightening conversations. | also thank the
other members of my advisory committee, Dr. Karl N. Reid, Dr. James H.
Taylor, Dr. Ronald P. Rhoten, and Dr. Larry D. Zirkle, as.well as my many
col]eagues‘for their help in the many aspects of my graduate studieé.

Charlene Fries provided valuable assistance in the pfeparation of
the final manuscript for this thesis. Thank you.

Finally, | thank my parents for their support and encouragement
throughout my entire education, and my wife Debbie for her patience and

kind understanding.

TABLE OF CONTENTS

--Chapter

I. INTRODUCTION .

Scope and Objectives.
Plan of Presentation.

11. BACKGROUND

Historical Developments .
Current Status.

11, THE CONTROL SYSTEM MODEL .

Optimal Controller Design Problem . .
The General Control System Model Representatlon .

[V. DIGITAL COMPUTATION AND RATIONAL;POLYNOM!ALS .

Exact Methods: . .
Rational Arlthmetlc. . .
Alternative Number Systems .
REDUCE Programming System.

Floating-Point Methods. . .
Direct Polynomial Representat|on .
Root Representation.

Summary .

V. DIGITAL COMPUTER IMPLEMENTATION OF THE OPTIMAL CONTROLLER
DESIGN THEORY. ..

Basic Operations. .
Polynomial Arlthmetlc
GCD Calculation.
Rational Polynomial Matrlx Arnthmetlc
Special Matrix Operations . .
Rational Polynomial Matrix lnver5|on .
Coprime Decomposition of Rational Polynomlal
Matrices . .
Matrix Spectral Factorlzatlon A
Partial Fraction Expansion of Rational Polynomlal
Matrices .

Vi. EXAMPLES .

Page

~ v

12
16

24

24
24
27
27
29
30

39

Chapter ' Page

Example ONe . v v +v v v v v 4 o & o o o o s o v 0 o . . bl
Example TWO « v « v ¢ ¢ & ¢ 4« o ¢ o o s o o o « o « . . b6
Example Three ¢ o o o v v v v v o 87

VII. SUMMARY AND RECOMMENDATIONS.« 95

Summary . . . S
Contributions . . « v v v & & v 4 v v e e e e e e e .. 96
Recommendations . « ¢« ¢« ¢« & o v o v o o o o o« o o o o 97

SELECTED BIBLIOGRAPHY L 98
APPEND’X A - OPTIMAL CONTROLLER DESIGN THEORY 103

Definitions, Conditions, and Assumptions. 103
Definition 1. ¢« . ¢« 103
Lemma 1. . . v & v i v v v 4 v e e e e e e e e o . 104
Lemma 2. . . ¢ ¢ v 4 4 v e e e e e e e e e e e o . 10k
Lemma 3. . & . . ¢ 4 4 v e e e e e e e e e e e . . 104

Assumption 1 . 105
Assumption 2 ., 105
Assumption 3 . 105
Assumption 4 . 106
Assumption 5 106

Theorem 1. o v) vl v v v v v e e o .. 107
Corollary 1. « ¢ ¢ v v v v v v v v v« « . 108
Corollary 2. v v ¢ v v ¢ v v v v v« « . 109
Corollary 3. v ¢« v v v v ¢ v v v o« . 109

~ APPENDIX B - PROTOTYPE PROGRAM STRUCTURE. 110

,Téble

LIST OF TABLES

Controllers-Computed'for Example One. .
Definition of Functions for the Control Loop of Figure 4.

Definitions of Functions for the Plant of Figure 3.

vi

Page_
65
66
7h

i

LIST OF FIGURES -

Figure

1.

2,

12.

13.

17.

Multivariable Control System Configuration .

Example ll1lustrating the General Model Representation.
Example One Control Loop .

Stabilization Loop for Example Two .

Actual and Analytic PSD of Disturbance Entering the Rate
Stabilization Loop of Example Two.

PSD of the Rate Error of the Stabilization System.
Open Loop Response of the Rate Stabilization System.
Closed-Loop Response of the Rate Stabilization System:

Block Diagram of the Plant Used for the Controller Synthesis
Process of Example Two .

Open Loop Response of Original Stabilization System With New
Controller for k = 1.0

Closed Loop Response of Original Stabilization System With
New Controller for k = 1.0 . e e e e e e e e e

PSD of Rate Error in Original Stabilization System With New
Controller and k = 1.0 .

Open Loop Response of the Origingl Stabilization System With
New Controller and k = 1.0x10-°, . e e e e .

Closed Loop Response of the Origénal Stabilization System With
New Controller and k = 1.0x107°, . e e e e e e e ee e

PSD of Rate Error in Originaé Stabilization System With New
Controller and k = 1.0x107°, . e e e e e e '

Comparison of the Cumulative RMS Power in the Rate Error of
the Original Systems for Various Controllers .

Open Loop Response of the Simpligied Stabilization System With
New Controller and k = 1.0x107°, e e e e e e

vil

'Page
13
17
62
67

69
69

71
72

/3

79

80
81
83
84
85
86

88

Figure Page

18. Closed Loop Response of the Simplifieg Stabilization System

With New Controller and k = 1.0x10~ 89

19. Block Diagram of the Plant Used for the Controller Synthesis
Process of Example Three 90

20.,‘bata_Flow Through the Controller Synthesis System T B B

viii

NOMENCLATURE
Transfer function matrix used to specify plant in general model
representation

Vector used to specify plant input in general model representa-
tion

Transfer function matrix of optimal controller to be designed
Vector representing plamt disturbances

Vector representing control system errors

Mean-square value of sensitive plant input

Mean-square value of control system errors

Total system performance measure, E=Et+kEs

Transfer function matrix used to specify feedback sensor pre-
equilization ' :

Transfer function matrix used to specify feedback sensor noise
coupling

Transfer function matrix used to specify feedback sensor
dynamics :

Matrix used to specify load disturbance spectral densities

Matrix used to specify feedforward measurement noise spectral
densities

Matrix used to specify feedback measurement noise spectral
densities

Matrix used to specify reference input spectral densities
Performance measure input weighting constant
Vector representing feedforward sensor noise input

Transfer function matrix used to specify feedforward sensor
pre-equalization :

L (s) - Transfer function matrix used to specify feedforward sensor
noise coupling

Lt(s) - Transfer function matrix used to specify feedforward sensor
dynamics

m(s) - Vector representing feedback measurements noise input

n(s) - Vector representing system input noise

P(s) -:Transfer function matrix used to specify plant dynamics
Qt - Performance measure error weighting matrix

r(s) - Vector representing command input to plant‘

R (s) - Vector representing all plant output in general model
P representation

s(s) -1

Sensitivity matrix, S(s)=(1+F(s)P(s)C(s))
u(s) - Vector representing filtered system reference input
ui(s) - Vector representing ideal system reference input

v(s) - Vector representing plant feedback measurements available to
controller :

W(s) - Transfer function matrix used to specify input pre-filtering

y(s) = Vector representing the plant outputs to be controlled
z(s) - Vector representing plant feedforward disturbance measurements

available to controller

CHAPTER |
INTRODUCT ION

Since the early 1960's when Ka]ﬁan [1] introduced state-space meth-
ods into optimal control theory, most of fhe advancements in control
system synthesis have utilized the time-domain techniques. The current
popularity of the state-space deéign and analysis theory is evident from
the vast amount of literature which has.been published. The so-called
Linear-Quadratic-Gaussian (LQG) theory [2] is the cornerstone for a
large class of significant developments. |

Although LQG and related time-domain synthesis techniques still
dominafe the literature, many control engineers prefer frequency-domain
design methods. Results are usually easier to interpret'and compare in
the frequency-domain and engineering design specifications are simpler
and more practical. Because of its continued use in practice, frequen-
cy-domain synthesis theory is beginning to reappear in the literature
and recently has been gaining more attention.

A variety of frequency-domain design methods exists such as‘trial
and error, pole shifting (modal), and optimal multivariable techniques.
0f these techniques, the optimal methods are the only true synthesis
methods relying mostly on mathematics to provide suitable controllers
while the other types require a fair .amount of design experience to
arrive at satisfactory results. Optimal design techniques are used to

find controllers which optimize some predetermined measure of overall

system performance. Performance measures for frequency-domain design
methods usually consist of minimization of the mean squére’steady-state
“error between.system input_.and output.

. Optfmal design ﬁéthods in the frequency-domain bafa]lel the LQG
techniques in the time domain; however, the frequency-domain theory of-
fers several advantages. Among these advantages the major ones are:

1. Plants do not require state-space representations, only rational
transfer functions are needed.

2. Dynamical sensors can easily be incorporated into the design.

3. Colored noise does not have to-be treated as a special case.

4. Simpler controllers can often be found.

Frequehcy-doméin methods have some drawbacks which may'make the
theory difficult to utilize. One drawback‘is the néed for accurate
plant models including good rational transfer function approximations
for details such as process lags. Load disturbances and measurement
noise must be representable by rational spectral density functions, and
these are not always available or easily obtainable. These problems are
present in most optimal design procedures although they can often be
circumvented such that valid results can be obtained.

The most serious obstacles tb the successful application of fre-
duency-domain multivariable controller design are the required algebraic
computations. These computations include spectral factorization, inver-
sion, canonical decomposition, and partial fraction expansion of ration-
al polynomial matrices. Additionally, the basic polynomial operations
of addition, subtraction, multiplication, diQision, and the calculation
of the greatest common divisor between two or more polynomials have in-

herent numerical problems which add to the difficulties of the over-all

computation. These computations are difficult to perform manually even
for the design of simple systems and are virtually impossible to do man-
ually for more complex multivariable designs.

The digital Computer offers a viable tool to aid in the computation.
of optimal controllers. Once a computer program has been developed which
is capable of per%orming £He entire computation there should be‘a size-
able increase in the amount and types of application of the optimal the-
ory. The intent of this research was to study the development of such a

program.
Scope and Objectives

The scope and objectives of this study are summarized as follows:

1. Pick from the available optimal frequency-domain theory the one
method which would yield the most benefit once implemented in a computer
program.

2. Develop a generalized method for the representation of the
plant model and the introduction of its associated transfer function
matrices into the design process.

3. lInvestigate the various methods which could be uséd to repre-
sent polynomials in a computer program. Investigate the numerical prob-
lems associated with each method of representation. Select the method
which will function best in the overall design program in terms of nu-
merical accuracy.

Lk, Develop a general prototype computer program which will compute
the optimal controller based on the fheory selected under the first ob-

jective. The resulting program should be general enough to allow testing

of various basic a]goriphms and accommodaté a moderate rénge of multi-
variable systems.

5. Demonstrate the program with an example. Compare the perfor-
mance of the resulting controller with that of controllers that already
exist. Use computer simulations of the system response for the compar-

ison.
Plan of Presentation

Chapter |1l provides background information.related to this study.
Major hfstoricaT developments related to optihal frequency-domain con-
troller design are presented in the chapter as well as a review'of cur-
rent literature related to theory and algorithmic procedures. The first
section of Chapter IIl describes the design theory which was implemented
in the program with Appendix A providing the rémaining details. The
last section of Chapter 11l describes the generalized model representa-
tion theory developed by this study.

‘During the course of this research, three major algorithmic tech-
niqués were considered for use in the controller design program. Chap-
ter IV summarizes the advantages and disadvantages of each method.
Chapter V presents the algorithmié technique final]y‘chosen and outlines
the manner in which various operations, such as partial fraction expan-
sfon and polynomial matrix inversioﬁ are computed fnvthe prototype pro-
gram. Appendix B describes the mechanical structure of the program. An
example illustrating the design process and use of the program is pre-
sented in Chapter VI and the conclusions and recommendations for future

study are given in Chapter VII.

CHAPTER 11
BACKGROUND
Historical Developments

The major impetus to optimal ffequency-dbmain control theory seems
to have arisen out of Wiener's famous work in filtering and prediction
[3]. In this work, Wiener demonstrated the solution of the Wiener-Hopf
integral equation which results from the minimization of the mean-square
error between the actual output of a filter and the desired or ideal.out-
put. By working in the frequency-domain and using a technique known as
spectral factorization, he was able to solve the equation and obtain the
realizable filter transfer function directly.

Later, NeWton,.Kaiser, and Gould [4] published a text demonstrating
how mean-square error minimization and the Wiener-Hopf solution could be
used to obtain optimal compensators for single-input, single-output feed-
back systems. The text appears to be the first publication to thoroughly
discuss the optimal design of control systems in the frequency domain,
addressing such problems as sensor dynamics, process and measurement
noise, and plant saturation. Their methodology suffered from a major
drawback that only open-loop stable, single-input, single-output plants
could be accommodated. Their work considered the solution of the fixed-
configuration, semi-free-configuration, free-configuration Wiener prob-
lems. | |

A number of related papers were later published which extended the

work of Newton et al. [4]. Amara [5] solved the multivariable free-
configuration Wiener problem and demonstrated the use of matrix spectral
factorization. Hsieh and Leondes [6] first developed a solution for the
sémi-free-configuration Wiener problem which required solving a set of
simultaneous algebraic equations avoiding the need to perform spectral
factorization. However, they did not prove that a solution to their
equations'existed and it was later shown by Dévis [7] that‘their method
failed in some cases. Bongiorno [8] also solved the semi-free-configu-
ration problem attempted by Hsieh and Leondes using.matri* spectral
factorization. | |

A1l of the previous design methods were unable to accommodate un-
stable plants and required the plant or process being controlled to be
open-loop stable from the start. Concurrently, several researchers were
investigating the questions of stability and physical realizability
associated with the synthesis of multivariable feedback control systems
[9,10,11,12]. Right-half plane pole-zero cancellations within a feed-
back loop were considered first by Ragazzini and Franklin [13] in their
early work with sampled data systems. An analogous treatment for con-
tinuous-time systems was preéented by Biéeiow [14]. Even with thesé
investigations; it was still some time later before the questions of
stability were fully understood and the restrictions removed from fre-
quency-domain synthesis methods.

The next largest advance in the theory appears to have occurred
with the study of Weston and Bongiorno [15] who extended the work of
Newton et al. [4] to the multivariable system. Their investigation
determined the manner in which load disturbance, measurement noise, and

plant saturation effects could be incorporated into multivariable

design processes. The plant matrix could be rectangular but was subject
to‘the condition that the number of plaﬁt output ~did not exceed the
number of input. The method aiso required that the plant be open-loop
stable.

llseveral other contributions to the frequency-domain optimal.céntrol
theory exist and have been published in various journals [16, 17] and
texfsA[l8, 19, 20]. However, these developments have been overshadowed
'by more recent ones. Various investigations into other methods which
are not strictly optimal have also been reported. Examples include the
inverse Nyquist array method of Rosenbrock [21] and the characteristic
loci methods of Belletrutti and MacFarlane [22, 23]. Others include the
pole shifting or modal techniques [24]. The use of these types of meth-
ods usually require a greater amount of design experience and are often
incorporated into interactive type computer deéign programs [25].

Two complete surveys have been published briefly describing the

various optimal and nonoptimal design techniques which have been inves-

tigated and reported over the previous years [26, 27].
Current Status

A significant result in optimal frequency-domain synthesis theory
has recently been published by Youla, Bongiorno, and Jabr [28, 29].
This work has contributed greatly tovthe overall optimal frequency-domain
design theory and appears to be the most comprehensive frequency-domain
synthesis technique to date. The questions of stability have been an-
swered as well as other engineering considerations such as steady-state
error.and sensitivity. The method is general enough to accommodate

open-loop unstable and/or non-minimum phase plants with no restrictions

on the number of input. and output. Both colored and white noise can
be a;commpdated as well as plant saturation effects. The method applies
to both single-input, single-output,and multivariable plants.

The duality between the time-domain and frequency-domain methods
for the solution éf stochéstic, multivariable, optimal control problems
has been demonstrated by MacFarlane [30], Barrett [31], and Shaked [32].
You]a et al; [29] also showed the duality between their methods‘and
time-domain methods. They further demonstrated the manner in which
simpler, suboptimal.controllers could be found by their methéd and not
by the time-domain methods.

Optimal frequency-domain synthesis requires factorization and man-
ipulation of polynomial matrices which present formidable computational
difficulties. For these reasons; implementation of the methods requires
the use of automatic computers td carryvout the calculations, even if
the Ordér of the plant is relatively low. Any simplifications of the
design techniques can be useful in reducing the computational burden.

A few recent studies have been made which consider simplifications
to the methods of Youla et al. [29]. Grimble [33] describes a method
which he reports to be easier to implement than that of Youla et al.
[29]. The advantages seem to be cancelled by the fact that his method
requires calculating three separate controllers, two of which are open-
loop and are not quite satisfactory in terhs of sensitivity. His work,
however, answers some important questions about inputs consisting of
both deterministic and stochastic components. Another work by Bongiorno
[34] demonstrates how the theory in reference [29] can be used in part
to obtain satisfactory controllers, but the method described is not op-

timal and requires intuition on the part of the user.

Studies related to the computational aspects of and the nuherical
problems associated with a complete optimal controller synthesis pro-
gram do not exist. However, some results have been published describing
algorfthms for computing various parts comprising the overall problem.
In part, the object of this research Waé to explore the problems which
arise when the various cohputational parts are combined inﬁo one com-
plete procedure.

Mogt of the studies in the literature related to computations in-
volving rational polynomials and rational polynomial matrices fall into
one of two general categories. The first category is comprised of exact
computétion methods. These methods assume the coefficients of the poly-
nomials can be represented as exact rational fractions with the sdlution
represented likewise. The second category consists of the methods which
utilize the more usual floating-point arithmetic.

Unique to. the exact methods is a special purpose programming lan-
guage known as REDUCE 2 [35]. REDUCE is a very powerful symbolic manip-
ulator whose primary function is the algebraic manipulation of rational
polynomials. The main disadvahtage of this programming system is its
inability to factor polynomials or perform division of polynomials, two
necessary computations required for spectral factorization, co-prime de-
composition, and partial fraction expansion of rational polynomial ma-
trices. The use of REDUCE 2 is considered in Chaptef V.

Basic principles of exact pdlynomia] arithmetic are summarized in
two texts [36, 37]. Recent contributions are directed toward more spe-
cific algorithms, such as those of McClellan [38], Horowitz and Sahni
[39], and Gentleman and Johnson [40], all of which are concerﬁed with

the computation of the determinant of polynomial matrices. These

e

algorithmsvrequire the coefficients of polynomials to be rgpresented as
rational integer fractions. Operafions are then performéd using both
the nuherator and denominator of each coefficient. During the course
of the operétions, the numerator-denominator pair must be constantly
reduced to‘its]owesf prime form to prevent excessive coefficient
growth. Coefficient growth, also known as ''intermediate expression
swell" [38], is the greatest difficulty in the use of exact computa-
tion methods.

The use of alternative number systems for exact computations has
also been investigated by a few authors. Knuth [37] presents a com-

plete treatment of modular or residue arithmetic. Addition, subtrac-

-tion, and multiplication are easily performed using residue arithmetic;

however, division cannot be performed in any similar manner.

Rao [41] has proposed the use of finite field transforms ﬁsing a
p-adic number system. His approach to exact arithmetic combines the
best features of the usual p-ary number system and residue arithmetic.
Some additional work has been done using this type of arithmetic which
is directly related to the computation of optimal controllers [42, 43].
Again, these methods seem hampered by the coefficient groth problem
mentioned above and, for purposes of this study, by lack of an ex-
plicit spectral factorization algorithm.

Many algorithms dealing with rational polynomial matrices and
using floating-point arithmetic have been published. Matrix spectral
factorization, a critical step in the optimal controller synthesis pro-
cess, was first developed into a numerical algorithm by Youla [44].
Later, Tuel [45], devised an algorithm for spectral factorization based

on an iterative procedure used to solve a set of equations similar to

IR

steady-state matrix Riccati equations. Anderson, Hitz, and Diem [46]
also devised a recursive technique that is similar to Tuel's algorithm.
Davis [47] and Grimble [48] have reported spectral factorization algo-
rithms which are of a non-recursive nature; however, Tuel's algorithm
reﬁains the most popular.

The inversion of rational polynomial matrices, also a key step in
controller synthesis, has been addressed by Downs [49], and Munko and
Zakian [50]. The decomposition of polynomial matrices to Smifh form is
discussed by Pace and Barnett [51, 52]. More basic algdrithms pertain-
iﬁg to polynomial arithmetic are also available [37, 53, 54].

The calculation of the greatest common divisor between two polynom-
ials is an extremely important calculation in the controller synthesis
theory, and efficient algorithms are mandatory. There exist ample stud-
ies related to the greatest common divisor problem [55, 56]. However,
the lack of adequate error analysis, and information pertaining to the
range of problems which can be successfully handled by the algorithms
makes the validity and usefulness of the procedures questionable. In
fact, most of the algorithms which utilize floating-point arithmetic
were demonstrated with rather trivial examples and lacked adequate er-
ror analysis and range of problem information. As a result some df
these algorithms, when implemented as presented in the literature, are

not usable in the overall controller synthesis design program.

CHAPTER 11
THE'CONTROL SYSTEM MODEL
Optimal Controller Design Problem

The multivariable controller synthesis theory of Youla, Bongiorno,
and Jabr .[29] was selected for use in this study. The theory is general
enough to accommodate a large class of both single-input single-output
and multivariable design problems. Additionally, the computations requir-
ed by the various steps of this design process are representative of those
required by most of the optimal frequency-domain synthesis theory in exis-
tence. By implementing the selected théory in a digital computer program
a general problem has been considered. Later development of programs for
less complex theories (or suboﬁtimal theories) should present few problems.

The remainder of this section outlines the control system model on
‘which this study was based. The theoretical details of the actual synthe-
sis procedure are provided in Appendix A.

The following notation will be used in the remainder of this thesis.
The transpose, inverse, trace, and determinate of a matrix A will bé de-
noted by AT, A-], TrA, det A, fespectively. In represents the n xn iden-
tity matrix and Onm represents the n xm zero matrix.

The control system configuration considered by Youla, Bongiorno, and
Jabr [29] and in»this research is shown in Figure 1. In the figure, P(s)
is an nxm matrix of rational transfer functions representing the system

plant. F(s) is an nxn matrix containing the feedback sensor dynamics.

12

== = ~-—-~— - - == - ==== 1
[|
i p
' e
' ot —— t—|—@
f + 1| Le L (s i
l(s) + I e
1 oS |] i
| |
L T (Si) __________ 1
n(s) 2(S) PO(S)
i (s) - CONTROLLER | o | PLANT X
Wi [T¢ - C9) Ps)
u(s)
V(S)
r """""""""""""""""" [
|
m(s) + : |
FO(S) ‘,1:*5 ' FEEDBACK I
! o SENSOR I ‘
| Fets) F(s) |
1 . |
o fe |
Figure 1. Multivariable Control System Configuration

erme

y(S)

€l

-

14

L(s) is optional and represents disturbance feedforward sensor dynamics.
Matrix C(s) is the mxn controller to be determined.

Plant disturbance and measurement noise are included by assuming

that
v(s) = P(s) r(s) + P_(s) ds) - (3.1)
v(s) = F(s) y(s) + F_(s) m(s) e (3.2)
z(s) = L(s) d(s) + L_(s) &(s) - | (3.3)

where Po(s), F(s), Fg(s), L(s), and Lo(s) are also real rétional matrices
and are of compatible dimension.

In some control system designs, feedback alone will not suffice in
the suppression of load disturbance and feedforward is advisable. This
feedforward is accomplished by measuring the disturbance via the sensor
matrix Lt(s). In many practical problems the choices of physical sensing
devices Lt(s)'and Ft(s) is restricted and dictated by the problem. Low
power pre-equaljzers Le(s) and Fe(s) can and in many cases should be used
to improve stabi]fty margin, to assure zero steady-state error, and td in—
corporate delay in the feedback path [29].

It is assumed P(s), Po(s), Lt(s), Lo(s), Ft(s), Fo(s) are known;

F(s) = F_(s) F,(s) (3.4)

and

L(s)'

L(s) L (t). (3.5)

Additionally, the spectral densities of u(s), d(s), 2(s), and m(s) must

be specified and are denoted by Gu(s), Gd(s), G, (s), and Gm(s), respec-

o {

~tively.

If yd(s) is the desired closed-loop response, it can be related to

15

the actual set point input signal ui(s) by

Yd(S) = Td(S) ui(S) (3.6)

where Td(s) is an ideal transfer matrix. |If Td(s) is embedded within the

prefilter matrix W(s) and W(s) is selected in advance, théh
u(s) = W(s) (u;(s) + n(s)) , (3.7)

is the best available approximation of yd(s). The performance measure is

based on the vector error

e(s) = u(s) - y(s) (3.8)

where y(s) is the actual plant output.

The performance criteria is given as

jeo .
E, = Z—'JT—_-j_Tr[ja, <e(s) QteT(—s)>ds (3.9)

where Qt is a non-negative definite weighting matrix and <<> denotes en-
semble average. Similarly, if Ps(s) represents the transfer matrix coup-
ling the plant input, r(s), to the plant states which must be protected

against saturation effects, then

.
0o

E, =‘§lj-TrJij< Ps(s) r(s) rT(-S) PI('S)> ds (3.10)

is a proven penalty function [4]. Hence, the total cost can be formu-

lated as
E = Et + kEs (3.11)

where k is a positive adjustable constant used to trade off linear perfor-

mance with system accuracy [29].

b

16

The General Control System Model Representation

As mentioned in the previous section, a user must supply the plant
matrix, P(s), the feedback matrix, F(s), the feedforward matrix, L(s),
and the gdditional transfer function matrices, Po(s), Fo(s), Lo(s), and
Ps(s),before the synthesis process begins. However, in larger multivari-

able plants which have a high degree of interconnectioh and several inner

contrdl'loops the required transfer function matrices may not easily be

determined. fn this section a generalized method for represénting the
plant model,whicﬁ can be used by a computer program to automatically de-
termine the necessary transfer function matrices, is outlined.

The procedure is best explained with an example. Figure 2 is the
block diagram of a plant and measurement system for which a controller is
to be designed. The blocks labeled GI, G2, etc. represent various known
transfer functions within the plant. Blocks F1, F2, etc. represent sen-
sor transfer functions and all blocks are assumed rational in the Laplace
variable s. |

The plant input is indicated by " and s disturbénce input by d]
and d2, and measurement noise input by n], N,» and n3. Selected plant in-

put and output are represented as elements of the vector Rp. With these

definitions, the following equation set may be written:

Rp(]) = Gl ry¥ dI - Rp(Z) (3.12a)
Rp(2) = G2 Rp(]) | (3.12b)
Rp(3) = G3 Rp(Z) (3.12¢)
R (4) = FI Rp(z) +n, (3.12d)
RP(S) = F2 Rp(7) +n, (3.12¢)

Gh r, +d _ (3.12f)

x
o
—~
) o
~
1]

¥ RpM Rp(2) Rp(3

G2 G3

» Rp(5) {Ei - £o | U Rp§)_’.'
——~G4—~*g€—‘65
dz

Rp(7)

I W . F?)‘

Figure 2. Example lllustrating the General Model Representation

Ll

[

G5 Rp(6)
R,(3) + R (

F
3 Rp(8) +

7)

n

3

18

(3.129)
(3.12h)

(3.121)

This equation set represents a set of simultaneous equations which after

rearranging can be written -in matrix form as

g

and

W

1
-G2 1
0 -G3
0 -FI
o 0
o 0
o 0
0 0
o o
Gl ry + d
0
0
n
n2
Gh rop + do
0
0

n3

(3.13)

(3.14)

(3.15)

19

Equation (3.13) describes the plant and feedback measurement system
completely. It should be noted here that the elements of Ap(s)and Bp(s)
are rational transfer functions.

The negt step is to determine A;I(s). Forlthis example the inyerse

is computed as

G757 G2+
!] O 0 0 o0 0 0 0

G2+1 G2+1

G362 63

G2+1 G Y 0 0 0 0 0 0

FIG2 FI

G2+1 (G2+1)

P 0 0 0O 0 1 G5F2 F2 0 0
0 0 o 0o 0 1 0 0 0
0 6o 0 0 0 G 1 0 0

G362 G3

G2+1 G2+1

F3G3G2 F3G3

G2+e1 Gn 20 0 PG F3F3

(3.16)

To determine the plant matrix P(s), it is first necessary to desig-
nate the input to be used and the output to be controlled. For now, let

the plant input be M and ry and the output to be controlled be Rp(8).

equal to one and the remaining input (d,, d

Setting r Fos dys dy,

i Nys MNos and

n,) to zero, the Bp(s) vector becomes

3

20

 {
1

Gl
0
0
0

BF')(s) =1, (3.17)
0
0
LO..

By solving

_'I .)

Rp(s)- = A, (s) Bp(s) (3.18)

the transfer functions from the input r. to each of the plant output can

1
be obtained. It is not necessary to find the entire Rp(s) vector since
only Rp(8) is desired. Therefore, multiplying the eighth row of A;](s)
by the Bé(s) vector, the 1 x2 plant matrix with only the first element

determined is

P(s) =[%§:§-‘lﬁ] (3.19)

Now by setting o to one and r and the other input to zero and repeat-
ing the above process, element PIZ(S) of the plant matrix Is obtained re-

sulting in

P(s) = [24222 ahes . (3.20)

In a similar manner of setting each of the various input, distur-
bances, and noises in turn to one and using the appropriate elements of
Rp(s), the matrices Po(s), Fo(s), F(s) P(s), F(s) Po(s), Ps(s), L(s) and
Lo(s) can be obtained. Notice that the F(s) matrix cannot be obtained

directly by this representation. This is not of concern since only the

=

21

products F(s) P(s) and F(s) Po(s) are aétually needed in the synthesis
calculation.

Several comments are in order at this point. First, the procedure
requires the inversion of the rational polynomial matfix, Ap(s). While
this may seem somewhat complicated, it should be noted that the matrix
is generally sparse and there exists a few efficient methods for perform-
ing this inversion (for example, REDUCE 2 [35]). Also, by careful selec-
tion of the output and input, a number of different plant input-output
configurations can be utilized by the controller design program with a
single inversion of Ap(s). Considering Figure 2 again, it may be desired
to design a control]ér for the single-loop plant which has ry as its in-
put and Rp(2) as its output. Using the procedure outlined previously and

the same A;](s) matrix, the plant is easily obtained as

P(s) = [Srer |- | | (3.21)

Once implemented in an efficient computer program, this generalized model"
representation allows many designs to be investigated with minimal user
effort.

A second comment is that methods similar to this have been used in
other frequency domain control system analysis programs [57, 58]; how-
ever, its‘use in a synthesis program as described herein is new. [f only
a state-space representation of the plant is available, it can easily be
related to the transfer function form of Figure 2 [59]. In fact, if a
state-space representation of the plant is available, then a very general

A](s) matrix is obtaihed, making it possible to consider all plant input-

output configurations.

PUCL

22

To illustrate the state-space approach, consider the familiar time-

invariant state-space equation set:

>°<(t) Ax(t) + Bu(t) + D_w(t) (3.22)

Céx(t) + E;z(t) . | o : (3.23)

y (t)

where x(t) is the state vector, u(t) is the input vector, y(t) is the
output vector, w(t) is the disturbanee'vector, and z(t) is the measure-
ment noise vector. After taking the Laplace transform of Equations
(3.22) and (3.23), they can be written as

x(s) ol

(st - As) (Bsu(s) + Dsw(s)) (3.24)

and

1

y(s) = C(st = A)™' (Bu(s) + Dyw(s)) + E_z(s). (3.25)

These equations can now be related to Equation (3.13) by letting

Rp(S) = y(s) (3.26)

Ap(s) = (sl - AS) (3.27)
and

Bp(s) = (Bsu(s) + Dsw(s)). (3.28)

The remaining calculations are then based on the equation

Ry(s) = C A ()71 B (s) +E z(s) | (3.29)

and the necessary transfer functions are obtained by a]ternatiVely set-
tfng the varfous input, disturbances, and noises to one and performing
the multiplications and additions as before. The only difference is the
presence of the additional vector, Esz(s), representing the measurement

noise process.

ol

23

As a final comment, the example of Figure 2 is trivial in that the
required transfer functions can easily be computed manually. Chapter VI
contains a more complicated example and demonstrates the effectiveness
of this model representation theory. Although no examples are provided
showing the use of a disturbance feedforward system, its inclugion in

the model representation is straightforward.

CHAPTER IV
DIGITAL COMPUTATION AND RATIONAL POLYNOMIALS

During the course of this research, two different schemes for repre-
senting rational polynomial matrices and for performing the related arith-
metic within a computer program were investigated. These investigations
were carried out with the knowledge that the results would subsequently
be applied in the development of a computer program for controller syn-
thesis. Since the synthesis program implements the design theory described
in Appendix B, the resulting scheme had to accommodéte an algorithm for
métrix spectral factorization, canonical decomposition of polynomial ma-
trices, and partial fraction expansion of rational polynomials.

The schemes investigated are classified as the exact method and the
floating-point method. The remainder of this chapter describes each of
the methods separately along with their advantages and disadvantages.

The final section of this chapter compares each of the methods, and shows
which method was chosen as thé best for the overall synthesis program.

Appendix B defines the logical structure of the prototype program devel-
oped by this study. The program allowed each of thé various representa-
tion and arithmetic schemes presented here to be easily tested within the

general framework of the overall synthesis program.
Exact Methods

Rational Arithmetic

The use of rational arithmetic provides a means of performing exact

24

[o v S-S

25

computations within a digital computer program. The basic concepts are

well known and can be found in many texts (see References [36] and [37]).
Rational arithmetic as applied to polynomials requires that each of

the coefficients of the polynomial be represénted as a ratfonal,fra;tion.

Consider a general nth-order polynomial

p(s) =a +as+a s +as>+...+as" ‘ (4.1)

To use rational arithmetic each coefficient must be represented as

q.
[.
a, = —; i=0,1,2,3,...,n (4.2)
i
where each 9; and r. is an integer.
Rational fraction representation requires two integer numbers be

stored in a computer program for each coefficient of each polynomial.

The number of digits in each of these integer numbers will easily exceed

"the normal integer wordsize of current computers. For example, an IBM/

370 can, in a single integer word, accurately represent at most nine
digits. The use of only nine digit integers by the synthesis program
would allow only the most trivial of problems to be solved. To illus-
trate, consider a 7th order polynomial whose roots are of magnitude
greater than 100. The low order coefficient of the polynomial has a mag-
nitude of approximately]OO7 and requires ét least 15 digits to represent
it accurately.

The wordsize limitation can be overcome by using several computer
words to represent a single integer number. The arithmetic must tHen be
performed by software since the normal machine arithmetic on most com-
puters operates only the prescribed machine wordsize.

Polynomial arithmetic is done in the usual manner except addition,

26

subtraction, multiplication, and division of individual coefficients
must take into account their fractional representation. The additionAof
two coefficients represented as in Equation (4.2) actuélly requires three
multiplies, an addition, and a reduction of the resulting fraction to its
lowest form. Reduction of a rational fraction to its lowest form means
dividing out of the numerator and denominator, their greatest common
divisor (GCD). This prevents the nuﬁber of digits in the coefficients
from becoming larger than necessary. Multiplication, division, and sub-
traction of coefficients are performed in a similar way.

Ratiénal arithmetic is highly desirable for use in the controller
synthesis program, énly for fhe reasoh that exact ;ﬁmputation is possi-
ble. The exactness of the various computations comprising the synthesis
procedure directly determines its success. There is, however, one im-
portant drawback to the use of rational arithmetic known as intermediate
coefficient swell. When rational arithmetic was implemented to perform
the inversion of the example system matrix (Ap(s)) of Chapter VI, the
number of digits required to represent some intermediate coefficients
grew to over 70. Coefficient growth results'in greatly increased com-
puter computation times and uses large amounts of memory .

A more subtle illustration of coefficient growth is provided by the

spectral factorization of a polynomial. Consider the polynomial
p(s) = 2 - s2 : (4-3)‘

which has ¥2+s and V2-s as its spectral factors. Any attempt to do the
factorization of Equation (4.3) using rational arithmetic and any conven-
tional factorization algorithm (for example, see Tuel [45]) will fail

due to the irrational coefficient v2. The number of digits required to

represent the irrational coefficient is infinite.

R A

27

Alternative Number Systems

The use of alternative number systems has been proposed recently as
a means of implementing exact arithmetic within a computer program. Two
method§ were investigated for use in the synthesis program. The first
method was the use of a residue number system [37] and the second was the
use of a finite segment p-adic number system [41].

The use of either of these methods reqqires the polynomials to be
representable as in Equation (4.1) with rational fraction coefficients.

The main advantage of using one of these number system is that computer

“memory requirements are reduced. Basic operations, addition, subtraction,

multiplication, and division, however, must be done by software which in-
creases the execution time of the program.
Unfortunately, the same problems which hinder the rational arithme-

tic described earlier, specifically coefficient growth during spectral.

~ factorization, are not eliminated by the use of these alternative number

systems. In fact, additional problems are introduced, especially by the
use of the p-adic representation. These additional problems lie in the
conversion of numbers from their alternate representation back to a read-
able decimal representation. The conversion process is very fime consum-
ing, and the need for the synthesis program to output various intermedi-

ate data requires many repeated conversions.

REDUCE Programming System

REDUCE [35] offers a very powerful means with which to manipulate
rational polynomials and rational polynomial matrices. It can perform
symbolic calculations as well as exact numerical computation. REDUCE

uses a high-level language similar to Pascal which makes programming

28

relatively easy. The ability to perform symbolic calculations is the
greatést asset of'REDUCE; however,.computer execution is slow and large
amounts of memory are required. Also, REDUCE is not available on many
computer systems, and its implementation on some systems, such as the
IBM 360 and 370 computers, is in;omplete.

Since REﬁUCE uses, basically, the same rational arithmetic described
earlier to do exact numerical calculations, it suffers from the‘same co-
efficient growth problem. This problem is easily avoided by the use of
symbols for the polynomial coefficients. REDUCE may then perform a de-
sired series of calculations and return the answer in terms of the orig-
inal symbols. To obfain actual numerical values for a solution, REDUCE
can be made to write its answer in the form of a FORTRAN subprogram which,
when supplied with the numerical values for the original symbols, can be
called to calculate numerical values for the solutions.

REDUCE is well suited as a preprocessor type system for the control-
ler synthesis program. It can be used to solve the generalized model
representation Equation (3.13) symbolically and write a FORTRAN subrou-
tine which is called by the synthesis program to obtain the various trans-
fer function matrices required (i.e., P(s), Pd(s), etc.). A REDUCE pro- |
gram was set up to do this for the pointing and tracking system example
of Chapter VI (see Figure 9) and it proved to work very well. Total exe-
cution time was approximately two minutes on an IBM 370/168; hbwever,
since the program must only be executed once for a particular plant, the
execution time may be acceptable.

The use of REDUCE to do the entire controller synthesis computation
was also investigated. The major difficulties encountered were the lack

of algorithms to do the spectral factorization, partial fraction

T

29

expansion, ana the coprime decompositions of Equation (A.3). THe devel -
opment of these slgorithms will require the addition of some basic capa-
bilities to REDUCE such as polynomial synthetic division and polynomial
factoring. If such capabilities become évailab]e for REDUCE and suitable
élgorithﬁs develop, it may be possible for REDUCE to sdlve the entire
controller design problem symbolically, giving the resulting controller
in terms of the original plant symbols. This would be a very ideal solu-
tion due to the fact that when any plant parameter's value is changed,
the controller is immediately known. Also, if the various weightings of
the design process were symbolic, the controller would also contéin these
symbols and trade-off studies for various weighting values could be done
very easily. |

Although REDUCE is very powerful, its use for the control ler synthe-
sis process is, at present, limited to the role of a preprocessor for
plant determination. As its capabilities are expanded and it becomes
more machine portable, it most likely will become a major tool for fre-

quency-domain controller design.
Floating-Point Methods

The use of finite precision floating-point or real arithmetic is
most advantageous from the standpoint of availabflity of algorithms such
as the spectral factorization algorithm of Tuel [45]. Real érithmetic
methods are also relatively easy to implement in computer programs with
well-known languages like FORTRAN. However, computations -involving poly-
nomials with real coefficients suffer a multitude of numerical problems.

The numerical problems became evident when direct implementation of

floating-point arithmetic was attempted in the controller synthesis

o RN

Ry

30

program. Numerical inaccuracies in the results of oné computation were
propagated and amplified by subsequent computations. The numerical
errors would eventually become so large that further computation became
impossible and the program would terminate before any solution was found.
In the remainder of this section, the use of floating-point arith-
metic for polynomial operations is discussed. Some problems are identi-

fied and means to overcome the problems are outlined.

Direct Polynomial Representation

Direct polynomial representation means polynomials are represented
in a computer program by storing the n+1 coefficients of an n-order
polynbmial as an ordered set of real numbers. Later in this section an
alternative representation is discussed in which the roots of polynomi-
als are stored along with a gain value.

In order to analyze the numerical problems associated with f!oating-
point polynomial computations, it is first necessary to examine the nature
of the rational polynomials which arise from linear systems. A rational

transfer function is represented by

m
™ (+1)
K, ':‘ ' | R CRY
A\ (Bi+ 1) '
j=1 Fj

where Kg is a constant gain and o, and Bj represent the zeros and poles
of the system. The a. and Bj can be real or complex and if complex they
occur as conjugate pairs.

Both the numerator and denominator, written as polynomials, become

31

3 m |

2 .
a, + a;s + a,s + a35 +.. .+ a s ‘ v(h,5)
b+ b,s+b 52 +b 53 +...+bs"
"o 1 2 3 n
where
4 = Kg _ (4.6a)
fi]
a, = K — (4.6b)
1 g o= al .
m-1 fi !
a, =K —_— (4.6¢c)
29 (3 kepel %%
m:g m=1 m ! '
ST DD VD D N . (4-64)
=1 k=2+1 j=k+1 “87k’j : . ’
m-m+l m-m+2 m-m+3 m_ I
a_ = .. — = (L4.6e)
2=1 k=41 j=k+l i=m %% %

and the bo’ b], b2 .. .bn are defined similarly without the Kg term. |If

lai, > 1 for i=1,2,3,...,m (4.7)

then the magnitude of coefficient a, can be large compared to coefficient
- Consider, for example, the poles Bj each having magnitudes of the
3

order of 10” (which is not unreasonable for a very large class of linear

systems). The magnitude of the low-order coefficient of the denominator
is 1 while the magnitude of the high-order coefficient 'is 10-3n. As the
order of the polynomial increases, the difference in magnitude between
the high-order and low-order coefficient increases. Normalizétion of the
rational polynomial of Equation (4.5) using the high-order coefficient of
either the numerator or denominator will not reduce this difference. This

large magnitude difference is one of the major difficulties in the use of

finite-precision, floating-point arithmetic.

L 28

32

A second major difficulty arjses from the finite-precision which com-
puters use for floating-point computation. Precision affects fwo impor-
tant polynomial calculations directly, synthetic division and the calcula-
tion of the GCD between two polynomials. To illustrate this efféct,

consider the low-order coefficient ao from the polynomial

n
p](S)‘= T (s +a.) ' o (4.8)

=1
which is defined as

R N : (4.9)

Assume, for simplicity, that éach o, is real and is accurate to two
significant digits and that the precision of the machine arithmetic is
assumed to be four significant digits. Calculation of the a coefficient
is done by successive multiplications with the results of each multiplica-
tidn being chopped to four digits. (Chopping is the worst case applicable
to finite-precision arithmetic. This is the technique used in a majority
of computers, although some employ a rounding scheme [60].) If no noise
is introduced by the multiply, the first product a0, will have no error.

The second product oo will be chopped to four digits; hence, the re-

2%3

sult of the finite-precision multiply becomes

a0, - € (4.10)

where € is the error introduced into the result by chopping. Proceeding

with the remaining products the final product becomes
a ~p,. = (~--(((a]a2a3 -ez)ah -83)a5 -eh)-'~)an Te (4.11)

n

and the total error in Py is

33

E = €)0y05 - - O € Gplle La + ... (L.12)

375 n n-1°

The remaining coefficients of the polynomial in Equat}on (4.8) involve
the sums of product§{ and in addition to chopping error intréduced by
mu]tibfication, additional error is adaed due to the addftion proceés.

Error due to chopping is.introduced into the coefficiénts of the
polynomials as they are computed using Equation (4.6). For some applica-
tions, this error may not represent a problem. However, for optimal con-
troller synthesis it is a very signiffcant pfoblem, since the success of
the computations depends on the ability of arithmetic to factor a high-
order polynomial into its lower order factors.

Returning now to the polynomial formed fromlEquation (4.8), suppose

that it is desired‘to divide out the polynomial

n-1
pz(s) = W (s +a,) ‘ (4.13)
i=1 ! -
leaving
p3(s) =s ta . | ‘(4-14)

The effect of precision error in multiplication can be demonstrated by
working with only the low-order céefficients of the participating poly-
nomials. Previously, the low-order coefficient of Equation (4.8) was
détermined to be P, from Equation (4.11). The low-order coefficient of

Equation (4.13) can be determined in a similar manner as

o1 =‘("'((a2a3d4 -eé)as + eé)";)an ‘Eé_] - (4.15)

Dividing °n by p;_] and again chopping the result to four significant

digits, o for Equation (4.14) becomes

34

& _ pn } a]a2a3...un -(ezahas...an-+e3a5a6...un-+en_]) ' e
1 - 1] ~ I
noop!_, Opoige . 0 (eza5a6...an-+83a6a7...an-+sn_]) d
(4.16)
where'sd is introduced by chopping after. the division operation.

To illustrate quantitatively the size of this error, a numerical
example can be used. Let n=5, and each a, be real and contain two signi-
ficant digits and their numerical values be given as (which the machine

carries as b digits)

o, = 11.00 - (b.17a)
o, = 22.00 (4.17b)
oy = 68.00 (4.17¢)
o), = 35.00 (4.17d)
ag = L.20. (b.17e)

The low-order coefficient of Equation (4.8) becomes (with 4 digit arith-

metic)

ps = 2417.0 x 107 . (4.18)
which has a total error equal to 2032. The low-order coefficient of Equa-

tion (4.13) is

pj, = 5757.0 x 102 (4.19)

with a total error equal to 56. Carrying out the division of Equation

(4.16) and chopping the result to 4 digits &5 is obtained as

&5 = 4,198 (4.20)

which is in error by 0.002 or 0.05 percent.
This error may seem somewhat small, so the next example illustrates

the effect of these errors, coupled with the errors introduced by

35

addition and'subtfattion, as they are accumulated during the entire poly-
nomial division process. The polynomial in Equation (4.8) calculated
with four digit arithmetic using the values given by Equation (4;]7) is

6 6 52
s

p](s) = 2.417x10" +1.009x10°s +1.286 x 10

+6.592 x]0353-+l.402 X]OZSA-FSS (4.21)

and the polynomial given by Equation (4.13) becomes

p,(s) = 5.757 x 10° +1.034 x 10%s +6.021 x 10352

+I.36x10253+s’+. o (4.22)
Performing the division in the following manner (see Equation (4.23) be-
low) the result is

3

P.(s) 2 _
1 _ _900s + 80s” + 0.2s .
'-P—Z—(;y'— ’4.2 + s PZ(S) (4.24)

The quotient of Equation (4.24) is in érror due to the presence of the
nonzero remainder term, even though the term 4.2 + s is correct. This
example illustrates how the errors of multiplication are amplified by
addition. The effects of finite-precision error become more prbnounced
as the order of the polynomials increases.

In general, the resﬁlt of the division will notyield as exact an an-
swer as in this example. ‘If P from Equation (4.8) is divided by the
first-order polynomial p3.From Equation (4.14), using again the same

numerical values, the result becomes

P (s)
F§7§7'= 5752 + 1033s + 6020 + 136s> + ot 4 %%%27 . (5-25)

When compared with Equation (4.22), the error becomes evident. While

2 + s
L, 5

L.
3.3 2

6 552 + 6.592x107s” + 1.402x10%s

pz(s)//2.417x106 + 1.009x10°s + 1.286x10

2 4

~(5.575x10% + 1.034x10 6.021x103s3 + 1.360x10%s" + s°
L2 0 k4

2.’4]7x]06 + h.333x1055 + 2.520x10's” + 5.7]0x10253 + 4.2x107s

-(2.4]7x]06 + 4.342x1055 + 2.528x]0hs2 + 5.7]2x10253 + h.Zx]OOS

- 9.000x1025 8.000x10's? - 2.000x10" 's>

5,2

+
+

4

(4.23)

9¢

R

37

these results by themselves may be tolerable, the controller synthesis
computation requirés many of these types of operatiOns; As error-contam-
inated results of one célculétion are used in subsequent calculations,
the errors propagate and become amplified. When the operations are done
using polynomial matrices, finite-precision arithmetic results in even
greater errors.

The third major problem is caused by the manner in which the frac-
tional part of a number is represented with floating-point arithmetic.
Only radix fractions can be represented exactly (up to the number of

digits of precision) using floating-point arithmetic.] All other frac-

tions must be approximated. This need to approximate certain fractions

causes additional error in the results of the multiplication and addition
operations. This additional error is called noise and in general will re-
duce the number of digits of precision actually available on a certain

machine [60].

Root Representation

In light of the problems associated with finite-precision, floating-
point arithmetic, an alternative method of representing polynomials was
investigated. Instead of storing the coefficients of the polynomials
directly, the actual roots (complex and real) are stored along with a
gain value.

There are several advantageé associated with the root representation

method. First, the magnitudes of roots are smaller than the magnitudes

]A radix fraction is a fraction which can be expressed as some mul-
tiple of 1/p%, where p is the base of the machine arithmetic and o is a
positive integer.

38

of coefficients. Second, for most‘engineering problems, roots.usually
need only to be accurate to two or three significant digits requiring
less precision than coefficients. Third, the multiplication of polynomi-
als is sfmple»ahd introduces no error since no actual arithmetic is re-
quired. ‘Final]y,kthe GCD between polynomials is easijy.defermined by com-
parison of»their roots.

The main disadvantage of the root representation method are polynomi-
al éddition and division. Addition of poTynomia]s in the root representa-

tion requires the evaluation of an equation of the form

K](s+oc])(s+oc2). .. (s +ocj) + KZ(S+B])(S +32)- . -(S+Bk)

= K3(s-+xl)(s-+x2). ..(s-+xz) . (4.26)

Here the K] and K2 are known gains of the two polynomials to be added and
. the a, and Bi are their known roots. Addition requires the determination

of the gain K_ and the unknown roots designated Ai, The only method which

3
could be devised to solve this equation required the use of a factoring
routine.

Two options were investigated to do the factoring. The first option

was to use an analytic root finding routine to determine the roots of the

function

f(s) = K](s-+a])(s-ra2). ..(s-+aj) + K (S-FB])(S-+82). . .(s-+sk)

2
(4.27)
directly. ‘The other option was to first compute the coefficients of each
polynomial term, add the two terms, then use a polynomial factoring rou-
tine to determine the desired roots.
The second option nullified the benefits of the root representation

method which was developed to avoid the problems associated with

39

repreéenting polynomial coefficients. The first option was difficult be-
cause the number of roots, %, in the sum was sometimes difficult to deter-
mine. Both methods were very time consuming since polynomial addition is
required often during the controller synthesis.

The algorithms employed to do the factorization broduced resu]és of
insufficient accuracy and the controller computation deteriorated faster
than with the direct polynomial representation method. Polynomial divi-
sion suffers the same i1l effects that addition does because it requires
a series of polynomial subtracts. Until a suitable method to do polynomi-
al addition and division is found, the root representation method cannot
be used. Once the addition and division problems are solved, new algo-
rithms for spectral factorization and partial fraction decomposition will

still have to be developed.
Summary

The various techniques outlined in this chapter were all investigated
during this research in an effort to determine which could be applied to
the controller synthesis program. |t was determined that the exact meth-
ods were extremely reliable; however, the real floating-point methods
yielded comparable results when the problems mentioned in the previous
section were accounted for correctly. The exact methods were found to be
usable for the preliminary steps in the synthesis process, such as tﬁe
invefsion of the A _(s) matrix of the generalized model representation.
0f the exact methods, the REDUCE programming system proved the most valu-
able. The other exact methods require complex programming to perform the
arithmetic and large amounts of memory to carry the large number of digits

in the coefficients which accumulated during computations.

i

Lo

Once suitable methods wére found fof‘avoiding'the problems of float-
ing-point arithmetic (i.e., scaling, increased precision, reduced noise)
it was discovered that for many small scale control systems, floating-
point arithmetic could be used to solve the entire synthesis problem. It
was also possible to solve the.generalized model representation, Equation
(3.18), using floating-point, for the sma]lef control system. The next
chapter déscribes the various algorithms employed in the controller syn-
thesis.

During the investigation of the numerical problems associated with
the use of polynomial arithmetic in the controller synthesis program,
some major domputation trouble areas were identified. First, accurate

calculation of the GCD of polynomials is of utmost importance to the suc-

cess of the overall synthesis program. The GCD calculation using float-

ing-point arithmetic and direct polynomié] representation, is the most
numerically difficult computation of alf the basic polynomial operations.
Second, the accuracy to which the more sophisticated computations, such
as spectral factorization, can be performed directly affects fhe success
of the overall synthesis. Finally, once any significant error contami-
nates the polYnomial coefficients during the controller synthesis calcu-
lation, ft is very rapidly propagated and amplified and the ability of
the program to determine a solution controller is greatly impaired. The
error propagation problem becomes worse when controllers for multivari-
able systems are being computed by the program,due to the fact that the
computations involve rational polynomial matrices instead of simple

rational polynomials.

CHAPTER V

DIGITAL COMPUTER IMPLEMENTATION-OF THE

OPTIMAL CONTROLLER DESIGN THEORY

Direct polynomial representation and finite-precision, floating-
point arithmetic were selected as best for the controller synthesis pro-
gram. This selection was made because: (l).the available algorithms for
spectral factorization utilized floating-point arithmetic; (2) methods
were devised as a result of this research to avoid the major problems
associated with,finite-precision, floating-point arithmetic; (3) the par-
tial fraction expansion algorithm deve]oped by this study réquired float-
ing-point arithmetic. Also, the use of direct polynomial representation
and fioatingfpoint arithmetic led to a computer program whiéh was less
complex and more efficient than the program which would have resul ted
had any of the exact theory been implemented. Direct poTynomial repre-
sentation was chosen instead of root fepresentation due to the lack of
an accurate polynomial addition routine for the latter.

This chapter describes the algorithms used in the prototype synthe-
sis program and the details related to floating-point arithmetic. The

information presented here is one of the major contributions of this work.
Basic Operations

Polynomial Arithmetic

In order to avoid the problems associated with the use of finite-

41

k]

L2

precision floatingfpoint arithmetic, three important features wére imple-
mented in the synthesis program. First, the precision of the entire pro-
gram.was increased to the maximum allowed by IBM/370 FORTRAN. This was
accomplished with the aid of the extended precision option of the |BM
FORTRAN Level H compiler and resulted in reliable precision to 34 signi-
ficant digits'[6]j. Second, scaling was implemented to avoid large mag-
nitude differences between the coefficfents of various polynomials.
Finally, an algorithm was developed and implemented for the addition and
subtraction of individual numbers which employed rounding to prevent pro-
pagation of calculation noise.

The first feature increased the precision of every po]ynomial‘co-
efficient to 34 significant digits and also increased the precision of
machine level arithmetic to 34 significant diéits. The second feature,
scaling, was used to reduce magnitude difference between the coefficients
of a polynomial. Scaling, sometimes called frequency scaling, has the
effect of dividing all the roots of a polynomial by a constant such that

their magnitude approaches one. Scaling can be applied to polynomials
by

I (5.1)

where r is a -scaling constant. The value of r is chosen to obtain mini-
mal range in the coefficient magnitudes. As an examp]e; the polynomial

of Equation (4.21) can be scaled by letting
s' = 10s. (5.2)

Equation (4.21) now becomes

6 7

p](s') = 2.417x10” + 1.009x10 752

s + 1.286x10"s

6.3

"+ 6.592x10°s 552

+ 1.402x106sh + 1.0x107s (5.3)

43

and the magnitude difference between coefficients is greatly reduced.
~This technique works well with rational polynomials since normalization
of either the numerator or denominator polynomial will further reduce
the mggnitude.of a}]_of the coefficients. Froperly adjusted éoefficient
magnitudes he]p prevent exponent overflow and underflow errors during
subsequent computations.

Unfortunately, scaling does not help the precision problem, and will
usually make it worse. As the rational polynomials are scaled and nor-
malized, the magnitudes of the coefficients tend to become less than
unity, which results in additional calculation noise and therefore reduc-
ed precision. As the order of the polynomials increases, the precision
required'fbr.accurate representation may exceed the hardware capability
of the computer. The oﬁly solution to insufficient precision js an in-
crease in precision. Hence, large optimal control problems cannot be
'solved unless the computer floating-point precision is increased or soft-
ware type multiple:precisioh arithmetic [62] is employed.

The basic polynomial operationsbwere implemented by algorithms which
are similar to those of Reference [54] except for the GCD operation. The
GCD algorithm was a version of the one proposed by Matthew [57]. The
third feature was included in all of the polynomial arithmetic routines.
This featﬁre proved to be a major contribution to the success of the
overal]_sYnthesis program and it is discussed here in detail.

Wheﬁever thebbasic polynomial routines require addition or subtrac-
tion of two numbers, a special routine is called to perform and monitor
the required operation. Even though every number in the brégram is stored
as an extended precision word (34 significant digits), the algorithm de-

veloped considers only part of the total number of digits valid during

-

Ik

addition or subtraction. The remaining digits are considered to be cal-
culation noise. The addition and subtraction routine first adds or sub-
tracts the numbers normally, then tests the results. The test is per-
formed in such a way that the effect is the same as if the numbers were
first rounded to some presef nﬁmber‘of valid digits before they are added
or subtractedf If-the test determines the result should be zefo; the
routine sets the result to identically zero.

The number of digits to be considered significant in addition or
subtraction is set at the start of program execution and can be adjusted
at various points during the controller computation. This value ig ini-
tially set to a value which prevents calculation noise from being propa-
gated and provides for the greatest number of significant digits for all
polynomial coefficients. A value between 26 and 28 was found to be the
maximum which could be used with FORTRAN extended precision arithmetic.
The ability to alter the number of digits at various points within the
synthesis program allowed the precision of the numbers to be progressive-
ly reduced to account for errors introduced by the various computation
steps of the program.

For purposes of this research, addition and subtraction were also
monitored to determine whether the magnitudes of the two numbers were
compatible. For example, if the number of valid digits is set to 30,

9

numbers whose magnitudes differ by more than 102 were considered incom-
patible. The addition and subtraction routine merely reported the occur-
rence of this condition. This monitoring was done to verify correct
operation of the synthesis program and did not always indicate an error

condi tion.

Both the above feature and the increased machine precision contributed

45

significantly to improved performance of all the basic polynomial opera-

tions. Scaling, in general, does not have any significant effect on

‘arithmetic operations except to increase calculation.noise slightly and

reque'the possibility of exponent underflow or overflow. The dperations

~ of polynomial division and especiaily the GCD calculation were most sen-

sitive to precision.

GCD Calculation

Accurate célculation of the GCD between two polynomials is one of
the most critical calculations of the entire synthesis process. It is
used to keep the numerator and denominator of all rational polynomials
pfime. It is critical because the validity of the synthesis theofy re-
quires that the rational polynomfal elements of certaiﬁ matrices have no
common factor§ between numerator/denominator pairs. The matrices defined
by Equations (A.12) and (A.13) in Appendix A are examples of these criti-
cal matrices.

Since the GCD calculation is critical, the algorithm which was em-
ployed by the synthesis program is outlined here. The algorithm is given
the coefficients of two polynomials for which the GCD is to be computed.
The following steps are then performed:

1. The zero valued roots of both polynomials are removed by in-

specting the low-order coefficients. The number of zero roots common to

both polynomials is retained.

2. Each polynomial is normalized such that its low-order coeffi-
cient is unity.

3. The polynomial of lowest order is subtracted from the other.

R U

Lg

The subtracfion is done by calling the polynomial subtraction subroutine
which employs the special addition and subtraction routine.

L. The results of the subtraction is then checked for the zero
polyﬁomial. If the result is the zero polynomial, either of the two
polynomials is the correct GCD. The GCD is made monicbby'high—order nor-
malizatfon»and the number of zero roots retained in step 1 are.inSerted.
If the reéult is not the zero polynomial, the calculation proceeds.

5. The zero root is removed from the polynomial obtained in step 3.

6. At this point there are three polynomials. The polynomial hav-
ing the highest order is discarded and the calculation repeats from step
2 using the two remaining polynomials.

The theory which supports this algorithm is outlined in Reference [57].

The following example demonstrates the effect of noise in the above
algorithm and the effect of precision. The two polynomials are those

used for the example in Reference [57] and are defined as

p](S)'= (53 +3s% + 95 - 4)(s? + ot - 352 + 25 + 2)
= 58 + bs! 4 IZs6 + 255 - llsh - 1953 + 3652
+ 10s - 8 (5.4)
and
pz(s) % (s3 + 352 + 9s - l&)(s2 - 10s + 5)
= s - 75" - 1653 - 7952 + 855 - 20. (5.5)

The calculation of the GCD of p](s) and p2(s) was carried out using IBM
double precision (16 digits) arithmetic and the algorithm described
above. Notice that each coefficient has two significant digits. By set-

ting a special variable (named NDIG) to the value of 2, the polynomial

s o

Ly

subtraction routine is instructed to consider iny two digits in each co-
efficient of the polynomials being subtracted to be significant. With
NDIG set equal to 2, the algorithm calculated the GCD of p](s) and pz(s)
to be 1.0 (no common factors). When NDIG was set to values between 3

and 12 inclusive, the GCD was obtained to be (with all actual 16 digits)

6cd(p, (s), p.(s)) = 1.000000000000000 s>
1 2
+ 3.000000000000006 s°
+ 9.000000000000019 s

- 3.999999999999942 . (5.6)

When NDIG was set to any number greater than 12, the GCD was again calcu-
lated to be 1.0. This result implies that at least three significant
digits are required to compute the correct result and that noise prevents

the result from being obtained with more than 12 significant digits.

Rational Polynomial Matrix Arithmetic

Rational polynomial matrices can be represented in one of two ways.

Let

= -

Pi(s) py(s) o py,(s)

Py (s) Pyy(s) oy, (s)

P(s) =| . -. . | (5.7)

Py (s) pkz(S) o ka(S)

b =

where each pkz(s) is a rational polynomial with coefficients of the form
of Equation (4.2). |If the least common multiple (LCM) of all the denomi-

nator polynomials of P(s) is calculated and labeled g(s), then by

48

multiplying each element of P(s) by g(s), the matrix can also be repre-

sented in the form

i I 1 | I]
pll(s) _ plz(S) coe Ppy(s),
py () pay(s) ... pl(s)

P(s) = ST . B . ' _ (5.8)

Pri(s) pep(s) oo pp (s)

where each pL%(s) is polynomial.

Through experience during the course of this research, the represen-
tation of Equation (5.8) was found to be the most suitable. The reason
this representation was selected is that this form is generally required
by the special algorithms (such as canonical decomposition, matrix inver-
sion, and spectral factdrization) of the synthesis program. The matrix
form of Equation (5.8) is easier to manipulate within a computer program,
and matrix arithmetic requires fewer polynomial operations than the alter-
‘native representation of Equation (5.7). The disadvantage of the repre-
sentation of Equation (5.8) is that polynomials p&z(s) and g(s) will
generally be of higher order and the magnitude of their coefficients will

be larger than the polynomials in Equation (5.7).
Special Matrix Operations

Rational Polynomial Matrix Inversion

Given a polynomial matrix Pi(s) and its scalar polynomial divisor,

the inverse of matrix P](s), defined as

k9
= 1 t ’
is cafcu]ated in the following manner. By using a procedure similar to

the one described by Gantmacher {63], Pi(s) is reduced to adiagonal matrix >by

a series of row and column operations.. The result of all row operations

is represented as an elementary matrix U(s) and the column operations as

an elementary matrix V(s). The operation is represented by the equation

U(s) Pi(s) V(s) = Pdiag(s)' (S.IO)
The inverse of P](s) is defined as

P11 (s) = g(s) [P1(s)]7 | (5.11)
Using Equation (5.5), the inverse of Pi(s) is .

[P ()17 = V(s) P31 (s) U(s). - (5.12)

Once U(s), V(s), and P (s) are obtained, it is a simple matter of

diag

inverting Pdiag(s) and carrying out the required multiplications. The

final result is then put: into the required rational polynomial matrix

form.
The main problem experienced with this algorithm was the very high-
order polynomials during the diagonalization process. When the order of

these polynomials increased to the point where their coefficients could

no longer be accurately represented, the algorithm failed.

Coprime Decomposition of Rational

Polynomial Matrices

A coprime decomposition algorithm is required to do the operations

50

shown‘as Equations (A.3)and (A.L4) in Appendix A. The algorithm developed
follows the theory of Jabr [64] which is outlined here.

By a suitable set of elementary row and column operations, the ra-
tional polynomial matrix F(s) P(s) can be reduced to its Smith-McMillian

form [44] and becomes]

F(S) P(s) = U(s)(a_(s) ® 0) V(s) (5.13)
where

() n, (s) ' n(s) o

QC(S) = diag d](Sj ’ dz(s) y e ey '&k—('éT : ' (5.14)

The subscript k equals the normal rank of the nxm matrix F(s) P(s). Each
numerator polynomial ni(s) is relatively prime to its denominator, di(s);

ni(s) divides n. (s) without remainder and di+](s) divides di(s) wi thout

+1
remainder.
This reduction is accomplished algorithmically using the method de-

scribed by Gantmacher [63] for reduction of matrices to canonical form.

The F(s) P(s) matrix is assuméd to be in the form
F(s) P(s) = ooy [P1(s)] (5.15)

where Pi(s) is a polynomial matrix and g(s) is the LCM of all the denomi-
nator polynomials of F(s) P(s). Pi(s)vis reduced to canonical form result-

ing in
(s) = u(s)(a(s) ® 0,) V(s) (5.16)

where U(s) and V(s) are elementary polynomial matrices representing the

]The symbol €@ implies ''direct matrix sum."

AT e

51

row and column operations used for the reduction. The matrix Qé(s) is of

the.Form

.(s) = diaglni(s), n;(s), ..., n (s)]. (5.17)

Now by calculating the GCD between ni(s) and g(s) and dividing

() |
ni(s) = GCD(n{(s), 10)) ; i=1,2,...,k : (5.18)
and
d.(s) = g(s) i=1,2,...,k (5.19)

i T &I (s), g5 ¢ ' T

are obtained. Since each ni(s) is relatively prime to its mate di(s),

there exist two polynomials pi(s) and qi(s), qi(s) # 0, such that

p;(s) n.(s) +gq.(s) dv;(s) =1; i=1,2,..., k. (5.20)

Each pi(s) and qi(s) are obtained algorithmically by solving k separate
sets of simultaneous equations. A suitable equation solver is employed
which includes an iterative solution improver for accuracy and can return
the number of significant digits available in the solution.

Each set of simultaneous equations is set up in the following manner.

Let the order of ni(s) be j and the order of di(s) be & and

IR P 2 i j
ni(s) aj tas tays 4L+ ajs (5.21)
and
i i 2 i g ’
di(s) = bo + b]s + bzs + ...+ bzs (5.22)

Assume the order of pi(s) and qi(s) to be 2 -1 and j -1, respectively, and

e

52

_ i i i 2 i -1 '
pi(s) =c, + c,s O CHIE SN AT » (5.23)
and
i i i 2 i j-1 :
ql(s) =e +es +eys” + + €S . . (5.24)
The matrix equation
)i i 17 i 1 T,
a 0 «.. O b 0 .« 0 c 1
o o o
i i i i i
a] ao . b] bo . < q
| i . i] . i
a2 a] b2 b] <, 0
i i i i i
. az ao - b2 bO CQ,'] 0
i i i i y i i = 1.
aj . aI bl X b] eo
i i i i i
0 aJ a2 0 b2 b2 e] .
‘ 0 * ' 0 . e;
i
0 . 0 . e,
j-1
- - " R
(2+j-2) x(2-1) (2+j-2)x (j=1)

(5.25)

is the desired simultaneous equation set which must be solved to obtain

c;, c;,. . ey c;_], e;, e:, e;,. .oy e}_]. Now defining
n = diag [n](s), nz(s), .. .,nk(s)] (5.26)
d = diag [d)(s), dy(s), ..., d(s)] (5.27)

p = diag [p,(s), pZ(S), c e pk(s)] (5.28)

- 53
q = diag [q,(s), a,(s), ..., q.(s)] : (5.29)

the desired coprime factors are obtained as

A(s) = (d éB) u(s) ™! | | o (5.30)

8s) = (0 @ 0,) VI6) 6

A =V () @1) | (5.32)

B (s) =U(s)(n @ On_k,m_k) (5.33)

X(s) = U(s)(@ @@ 1 _) (5.34)
qnd |

V() =V (@O) - o (5.35)

Note that since U(s) and V(s) are elementary matrices, their inverses are

easily generated during the canonical reduction phase of the algorithm.

Matrix Spectral Factorization

The two spectral factorizations in Equations (A.12) and (A.13) are
computed by the synthesis program using the algokithm developed by Tuel
[45]. While spectral factorizations are crucial to the success of the
synthesis program, they are difficult to compute numerically.. If the com-
puted factors do not contain sufficient accuracy, the synthesis progrém
may fail to compute any valid controller.

Matrix spectral factorization is outlined briefly here and full de-
tails of Tuel's algorithm can be obtained by consulting Reference [45].

Given an r x r spectral matrix, G](s), whose elements consist of rational

M TS

54

polynomials, and which has the following properties:

. G](s) is real, i.e., é](s) = G](E);

2. GI(-s) = 6,(s);

3. G](s) is of normal rank r almost everywhere;

L, G](jm) is positive semidefinite for every finite w;

then the spectral factor, H(s), can be computed such that
T o
G (s) = H (-s) H(s). (5.36)

Since Tuel's algorithm can factor only polynomial elements and G](s) con-

tains rational elements, G(s) is written alternatively as
= 1] (
G](S) = EYET'G](S) (5.37)

where Gi(s) and g(s) are, respectively, matrix and scalar polynomials.
This form is compatible with the rational polynomial matrix representa-
tion of the synthesis program. The spectral factor, h(s), is computed

for g(s) and H'(s) for Gi(s) such that
g(s) = h(-s) h(s) _ (5.38)

H' T (=) H'(s) . (5.39)

1
Gy (s)
The matrix spectral factor H(s) becomes
1
H(s) = NOJ H' (s) . (5.40)

Briefly stated, the spectral factorization G'(s) or g(s) is perform-

ed by first mapping the continuous plane onto the discrete plane, solving

2The overbar denotes complex conjugation.

i

o

55

the discrete faCtofization problem.using an iterative protedure, then map-=
ping the solution back to the continuous plane. Particular attention was
paid to accuracvahen this algorithm was incorporated into the synthesis

program. The effects of arithmetic precision and frequency scaling were

studied and the following conclusions were obtained:

1. The accuracy of the continuous plane to discfete plane mapping
depends heavily on the precision of the”arithmetic emp]oyed;

2. The convergence of the iterative equations used to do the dis-
crete factorization is directly affected by the range of coefffcient mag-
nitudes in the polynomials of G'(s) or in g(s). Preliminary frequency
scaling of G'(s) or g(s) can result in significaﬁtly faster cénvergence.

The effect of scaling is easily demonstrated with an example. The
left-hand side of Equation (A.13) (from Appendfx A) which results for
Example 1 of Chapter VI is

A(s) 6(s) AT(-s) = (5.76x108 = 7.32x108s2 + 1.5325x1085"

- l.567708x]06s6 + l.306x103s8

- 1.0s'9/(100. -s2) . (5.40)

The numerator polynomial in this equation was factored using the spectral

factorization algorithm of Tuel without scaling. The factorization re-

quired 460 iterations to converge to an answer accurate to 16 significant

digits. The denominator required only a singTe iteration to converge due
to the fact that it is only a second-order polynomial. The matrix 2(s)

from Equation (A.13) was obtained as

2(s) = (2.4x10"

+ 3.970886644124943x10%s
+ 1.759987654268718x10%s2

|

56

+ 2.014812383065610x103s3
+ 7.304536101718718726x10'sk

+ 1.0s2)/(1.0x10! + 1.0s) . (5.41)

Using a scale factor of 10.0 and the change of variable defined by Equa-
tion (5.1), the spectral function in Equation (5.40) becomes

A(s) 6(s) AT(=s) = (5.76x10° - 7.32x10'%s2 + 1.5325x10' 25"
- 1.567708x10'2s6 + 1.306x10!1s8

- 1.0x1019 10y /(100.0 - 100.0s) . (5.42)

Notice that the range of coefficient magnitudes is approximately half
what it is in Equation (5.40). The spectral factorization of the numera-
tor of Equation (5.42) required only 96 iterations to converge with the

same 16 significant digit accuracy. The unscaled solution for this case

is identical to Equation (5.41).

The effect of scaling was as dramatic for matrix factorization prob-
lems as it was for the above scalar problem. Example 3 of Chapter VI
demonstratés the performance of the factorization problem for the matrix
case.

The factorization of Equation (A.13) requires a slightly modified

approach. Repeated here, Equation (A.13) is

A(s) 6(s) AT(=s) = a(s) 2" (-s) . | (5.43)

The spectral factorization algorithm, however, computes the factor Q'(s)

such that
A(s) G(s) A" (=s) = 2! (=s) 2! (s) (5.44)

which is not the desired result. In order to obtain the correct factor,

the synthesis program first computes an intermediate matrix as

57

P (s) = [A(s) 6(s) A' (-5)1" (5.45)

and the factorization is carried out using P](s). The factorization

yields the matrix Q" (s) such that
e(s) = TAGs) 6(s) AT (-5)1 = T (-s) 0(s) o 8)
Transposing each matrix in équation (5.46) yields
PT(s) = Als) 6(s) AT(s) = 2T (s) 2'(-s) . (5.47)
Comparing Equation (5.47) with Equation (5.43), the desired factor is

a(s) = "' (s) . © o (5.48)

Once the factorization of P](s) is complete, the synthesis program must

then transpose the resulting matrix factor to obtain the correct factor.

Partial Fraction Expansion of

Rational Polynomial Matrices

The required partial fraction expansions are shown in Equation
(A.19). The general problem can be stated as follows. Let P](s) be a

matrix of rational polynomials. Then the equation

Pi(s) = (P (s)}, + (P (s)}_ + (P ()}, (5.49)

represents the partial fraction expansion of P](s), where {Pl(é)}°° is the
part.associated with the polé at infinity; {P](s)}_ is thé parf which has
all of its poles in Real(s) > 0; and {P](s)}+ is the part which has all
of ifs poles in Real(s) < 0.

An algorithm was developed to do the partial fraction expansion

which is based on the solution of a set of simultaneous equations. A

58

rational polynomial matrix is represented by the synthesis program in the

form

P(s) = oy L P1 (s) - (5.50)
'

where Pi(s) and g(s) are, respectively, matrix and scalar polynomials.

The algorithm expands ea¢h .element of P, (s) separately; therefore, it is

1
necessary for the algorithm to compute each rational polynomial element
using g(s) and Pi(s). This is done in the following manner. Let P;j(s)
be a polynomial element of Pi(s). Compute the GCD of g(s) and P;j(s) and

divide to obtain

n(s) = i) (5.51)
GCO P, (57, (s)) ’
and
d(s) = g(s) (5.52)

GeD (P}, (57, g(s))

which yields the desired rational polynomial element defined as n(s)/d(s).
This insures n(s) and d(s) to be relatively prime and the number of simul-
taneously equations to be solved minimal.

The denominator polynomial d(s) must be split into two polynomials,-
one containing the roots which lie in Real(s) > 0, and one containing the
roots which lie in Real(s) < 0. These are designated d+(s) and d (s), re-

spectively. The algorithm must now compute a(s), b(s), and c(s) such that

n(s) a(s) b(s)
FION (s) + + — . (5.53)
d(s ‘ d+(s) d (s) '

The above equation can now be rearranged into a form similar to Equation

(5.20) and stated as

iR

ST

59

n(s) = c(s) d"(s)d"(s) + a(s)d (s) + b(s)d"(s). (5.54)

The algorithm assumes the order of polynomial a(s) to be one less than
the order of d+(s), the order of b(s) to be one less than the order of
di(s), and the order of c(s) to.be the difference between the order of
n(s) and'd(s). -If the order of n(s) is less than the order of d(é),thén
c(s) is assumed to be the zero polynomial.

Matrices are set up representing the simultaneous equation set in a
manner similar to those of Equation (5.25). The difference is that the
vector of unknowns contain the coefficients of a(s), b(s), and c(s); the
solution vector contains the known céefficients of n(s); and the_constant
coefficient matrix is formed using the coefficients of d+(s) and-d-(s).
The equation set is then solved using a high accuracy lfnear équation
solver and the coefficients of the unknown bo]ynomials are obtained.

The above process is repeated for each element of PT(S). As the ex-
pansion of each element is computed, the desired part of the expansion is
placed into a matrix. The algorithm then returns the solution matrix in
the standard matrix representation form similar to Equation (5.50).

The main problem experienced using this algorithm was the inaccura-
cies in splitting each d(s) into its corresponding right- and left-hand
s-plane parts. The splitting was done by first factoring d(s) and then
forming the coefficients of d+(s) and d (s) with the resulting roots. In
general, - the partial fréction expansion algorithm was the majof source of
inaccuracy within the synthesis program and further research is needed to

improve the algorithm.

i A

-

' CHAPTER VI
EXAMPLES

Three separate examples are presented in this chapter to illustréte
the per%ormance and appiication of the controller synthesis program which
has been developed. The first example, from Youla, Bongiofno, and Jabr
[29], is a sing]e?input single-outputbcontroller design prob]ém. Their
design problem is done here to demonstrate the performance of the program
developed by this research. Controllers computed by the program are com-
pared with the controllér obtained throqgh hand calculation by Youla et
al. [29].

The second example shows an application of the synthesis program to
a real, nontrivial controller design problem. The program is used to de-
sign two separate single-input single-output controllers for a stabiliza-

tion loop of an airborne laser pointing and tracking system. The two

“controllers are computed for different values of the saturation weighting

parameter k (see Equation (3.11)). The performance of both is then com-
pared with the performance of the stabilization system with its original
controller. The results of this example illustrate the usefulness of the
frequency-domain controller synthesis program.

The third example is an extension’of the application in example two
to the multivariable case. A]though the current version of the syﬁthesis
program was unable to compléte]y determine a controller, the example is

useful in identifying specific problems in the numerical procedure.

60

61

Identification of these problems areas is useful for establishing future

research directions.
Example One

The example presented here is from the work of Youla, Bongiorno, and
Jabr [29], and a complete treatment of the problem can be found in the
thesis of Jabr [64]. The results computed by Jabr were used to verify
the controller computed by the synthesis program. The results presented
here comprise the first complete machine computation of a controller uti-
lizing optimél frequency-domain synthesis theory.

A biock diagram of the plant used for this example is shown in

Figure 3. The plant matrix is defined as

s -1

P(S) =T——-7_s p— ‘ (6.])
and is both unstable and non-minimum phase. The feedback sensor consists

of a pure delay element,

F(s) =e 015 | (6.2)

which cannot be accommodated as is by the design theory.
To make the feedback sensor compatible the pure delay must be approx-
imated by a suitable rational transfer function. For this example a Pade

approximation is used and the feedback transfer function becomes

2
00 - ’
1200 6OS+52 . (6.3)
1200 +60s + s

F(s) = Fe(S) Ft(S) =

There is no feedforward in this example; therefore,

N

L(s) = Lo(s) = Gl(s) =0 . (6.4)

62

($)YA

(s)p

doo [043u0) sug °o|dwexy ¢ =4nbi4
(S)u
s(1°0)-0 = (81 -
(2-S)S _
S Iﬁmvﬂ* ot Ava

*(s)n

o

63

Other related transfer functions are defined as

PO(S) 1 (6.5)

F(s) =1 E (6.6)

(¢]

The F(s) P(s) transfer function has a pole at the origin; therefore, the
closed-loop system can track a step input with zero steady error and the

input spectral -density becomes

6 (s) = L | 6.7

S

In this example, the input itself must be protected from saturation;

therefore,

P(s) = 1 ; ' (6.8)

and
k = 4, (6.9)

The disturbance spectral density and the spectral density of the measure-

ment noise are

Gd(s) = ;)B—]:—sf (6.10)
and
Gm(s) =1, (6.11)

respectively.
The controller obtained by Jabr [63] for this system was defined as

ko(s—a])(s-az)(s-a3)(s-&3)

(s-8,) (s-8,) (s-B;) (s-8,) (s-B,) (6.12)

C(s) =

64

where
k, = 67.228808 . ' (6.13a)
ay = 0.0148746 | (6.13b)
a, = =9.9999638 | | | (6.13¢)
oy = -30. + j17.320508 . - f »_: (6.13d)
B, = 2.41327103 o | : (6.13e)
sé = -9;9806hoh : (6.13f)
By = -33.654632 (6.13g)
8, = ~18.0573239 + j14.991623 . | (6.13h)

The validity of this controller was verified by Jabr, making it a suit-
able reference which the program generated controllers may bé compared
against. The model in this example is not complicated enough to warrant
use of the generalized model preparation pfogram.

The synthesis program was executed several times'under identical

conditions except that the number of significant digits (variable NDIG)

‘was changed for each run. NDIG was initially sét.to 26 in all of the

runs. NDIG was then reduced after the spectral factorization to a dif-
ferent value for each run. This allowed an investigation of the impor-
tance of precision to the controller combutation.

Table | shows the roots of the resulting controllers as they were

computed for various values of NDIG. The roots were obtained directly

from the numerator and denominator polynomials of the controller computed

by the program. The table shows that for some values of NDIG the numera-
tor and denominator of the controller contain identical roots. This is
due to the fact that, with NDIG significant digits, the synthesis program

could not reduce the controller polynomials any further.

TABLE |

CONTROLLERS COMPUTED FOR EX%MPLE ONE

. NDIG Gain Numerator Roots " Denominator Roots
24 67.2288 -0.244256 -0.244256
~ 0.0148746 2.41327
-2.04703 -7.04703
2.00000 2.00000
2.00000 2.00000
4 2.00000 - 2.00000
& -9.99996 -9.98064
; -70.0000 -10.0000
: -30.0000 *j17.3205 -33.6546
-30.0000 *j17.3205 =30.0000 +j17.3205
-30.0000 %j17.3205 -30.0000 #j17.3205
-18.0573 +i14.9916
20 67.2288 0.0148746 -0.244256
5.0453 -2.04703
-9.99996 7.91363x10719
-10.0000
15 67.2288 ~0.244256 -0.2244256
0.0148746 2.41327
-7.04703 -2.04703
2.00000 2.00000
=9.99996 -9.98064
~1.00000 -1.00000
-30.0000 +j17.3205 -33.6546
-18.0573 +j14.9916
10 67.2288 -0.244256 -0.244256
-2.04703 -2.04703
0.0148746 2.41327
-9.99996 -9.98054
-30.0000 +j17.3205 -33.65L6
_ <18.0473 +j14.9916
7 67.2288 0.0 6.39717x10°3
0.0 6.50306x10"3
~0.247569 -0.247569
3.05433x1073 3.05433x10"3
~0.0148741 2.41403
=2.04581 -2. 05681
2.00000 1.99912
~10.0000 -9.98069
-30.0000 *j-17.3205 -33.6546
~18.0573 +j14.9916
4 6 67.2288 0.0
i -0.244338 -0.244338
g 0.0148743 2.41308
¥ -2.04698 -7.04698
2.00000 2.00017
-10.0000 -4.42325x1076
-30.0000 *j17.3205 -9.98069
-33.6546
<18.0573 +j14.9916
5 67.2288 0.0149125 3.87469
-11.2113
L 67.2288 0.0149125 3.87469
-11.2113
Note: Underlined values are the roots of the actual optimal controller.

65

R e

66

These results show that for this particular example the controller

can be reliably computed with no less than 10 significant digits and no

more than 15 significant digits. As NDIG is increased upward past 20

digits,
noise in

This can

the order of the polynomials in the controller grows, since the
the coefficients prevents further reduction of the polynomials.

become a serious problem if the order of the controller becomes

too large for it to be analyzed.

Example Two

This example illustrates the app]ication‘of the frequency-domain

synthesi

s program to a real, non-trivial system. The system under con-

sideration here is a rate stabilized control loop of an airborne pointing

and trac

Il conta

king system and is shown in block diagram form in Figure 4. Table

ins the definitions of the various blocks shown on the figure.

TABLE 11

DEFINITION OF FUNCTIONS FOR THE CONTROL LOOP OF FIGURE 4

Function Definition
RIG 1/(s(1+5/1667) (1+1.25/3769.9 + (s/3769.9)2)
J 268.5
DM 2.24
V1 0.02(1+s/1847)/((1+s/25) (1 +5s/3562) (1 +s/12485)
(1 +s/9425 + (3/9425)2))

Gl 1666.67/(1 +5s/1920)

18000
K 921000
C(s) 443000(s/35+1) (s/75.4+1)/(((s +1)(s/2557 + 1) (s/697 + 1)

(s/2055+ 1) (1 +1.2s/1094 + (s/1094)2))

0.9xK
DM SPRING CANCEL

FLOW DMI
COUPLING ‘

—I"?—WR'G [o

(72
|7§| X
. [«

P 8

RATE LOOP

—Dl

Figure 4. Stabilization Loop for Example Two

L9

e

68

This system is in actual existence and utilizes the controller form
shown in Table Il. The plant is the inner-azimuth gimbal of four jimbal,v
two degrees of freedom pointing system. The control loop formed around

;he blocks marked V1 and Gl is a pressure controlled hydraulic drive sys-

‘tem for the gimbal. Constant J is the moment of inertia in the gimbal,

DM is the effective moment arm of the hydraulic actuator, B is the effec-
tive damping in the gimbal mounting, and K is the spring force. The loop
marked "'SPRING CANCEL" is used to cancel the effects of the spring and
causes the rate loop to approximate a Type 1 system. The spring cancel
is not 100 percenf and the rate loop is not a true Type 1. The block
dfagram.shows the gimbal inertia to be modeled with one angular degree
of freedom. The model used for comparisons in this chapter actually had
a two-degree of freedom gimbal structure with a resonance near-llO Hz.
The rate loop is driven with a rate command at the point marked I]
which is generated by a tracker systeﬁ (not shown). A rate integrating
gyro (block RIG) serves as the mafn sensor element. Motion disturbance
in the oufer gimbal system enters the stabilization loop at the point
marked D]. The primary concern of this study is the aircraft yaw vibra-
tion which is transmitted through the outer gimbal to the inner gimbal.
Figure 5 shows the power spectral dénsity (PSD) of the actual rate dis-
turbance entering the loop at point D]. The approximation is obtained

from the function

6 () < 120107 ((0/0.1)% + 1((w/320+)* + 1)

(6.14)
D ((0/56.)% +1)2

and serves as the spectral density functions used in the controller syn-

thesis described later.

PSD (Db)

69

-70_

80.4

-90+

y T
Actual Test -
Data ' :
r"\ R
\ .
1

Analytic Function
Used in Design

-100

|
10 f00 1000
FREQUENCY (Hz)

Figure 5. Actual and Analytic PSD of Disturbance Entering the

RATE ERROR PSD (Db)

Rate Stabilization Loop of Example Two

T |
| 10 100 1000
FREQUENCY (Hz)

Figure 6. PSD of the Rate Error of the
’ Stabilization System

‘the PSD function GD(m) (Equation (6.14)) applied at point D

70

The performance of the stabilization loop of Figure 4 is shown in
Figure 6, which is the rate error response at point R, (see Figure 4) to
z Figures 7
and 8 show the open and clbsed loop response of the stabilization system.

The objéctive of this example was to design a new controller, C(s);
which will optimally improve the performancé of the syétem shown. Figure
9 shows a block diagram of the plant considered for the desigﬁ process.
The associatéd definitions of the blocks in the figure are Tisted in Table
I1l. The plant is the same as the plant in Figure 4, except that the var-
ious transfer functions have been simplified as shown in Table ll1l. These
simplifications were necessary as an aid to reducing the numerical diffi-
culties during the controller synthesis process. Because of these changes
the synthesis process will produce a somewhat suboptimal controller de-
sign. The integrator at the plant input is used to account for the rate
integrating gyro which must be considered as part of the plant. The réte
integrating gyro cannot be included in the feedback measurement system
because the synthesis theory allows only stable measurement systems. The
effects of spring have been removed so that a true Type 1 plant is possi-
bie.

The general model representation is now formulated for this plant.
Even though the plant may not warrant the general model representation,
its use makes calculation of the necessary transfer functions easy. The

model equations can now be written as described in Chapter I11:

r] J
Rp(l) = —FN - Rp(s) Gl (6.15a)
Rp(z) = Rp(l)Vl - s Rp(h) DM (6.15b)

AMPUTUDE(Db)

60] T 0

1-90

—f80
-1-270
-|-360
1-450
1-540

1-630

\
N-720

-20 A La -810
R 10 100 1000

FREQUENCY (Hz)

"Figure 7. Open Loop Response of the Rate:
Stabilization System

PHASE (DEGREES)

2 st

AMPLITUDE (Db)

20 T T

1
I
N
~
o

-450

-540

-630

=720

I |
1 10 100
FREQUENCY (Hz)

00

Figure 8. Closed-Loop Response of the Rate

Stabilization System

PHASE (DEGREES)

72

RPN

+ 2 Rpf2)

Gl

Figure 9. Block Diagram of the Plant Used for the Controller
Synthesis Process of Example Two

Rp(4)

¢l

TABLE 1]

DEFINITIONS OF FUNCTIONS‘FOR THE PLANT OF FIGURE 9

-

Function DefiniFion
J 260.0
DM 2.2
V1 0.02 (1 + s/1800)/((1+5s/25) (1 + s/3500))
G 1666.67/(1 + s/1900)
B 18000.0
K 0.0 (spring cancelled)

74

75

R,(3) =R (2) LB g () (B2 K | (6.15¢)
Rp(l*) = Rp(3)/s - d/s (6.15d)
Rp(S) = Rp(3) +n, (6.1.5e)‘

Thus, the Ap(s) and Bp(s) matrices are defined as

1 Gl 0 0 0
=Vl 1 0 s DM 0
0 -G1 DM (s B+ K) 0
Ap(S) = s J s J (6.16)
0 1) —l- 1 0
s
0 0 -1 0 1
_rl ;T
s DM
0
Bp(s) =| 0 (6.17)
-d]/s
M

A FORTRAN version of the general model representation preprocessor
program (see Appendix B) was used to compute the transfer functions for
the synthesis program. Since this is a single-input single-output sys-
tem, the plant input is designated to the model preprocessor as . and
the plant output was designated as Rp(3). The measufed output was desig-
nated as Rp(S), the disturbance input as d], and the measurement noise

as n The preprocessor used the algorithm described in Chapter V to

1
compute the inverse Ap(s) matrix. Since the FORTRAN preprocessor was

used, the Ap(s) and Bp(s) matrices had to be defined with the actual

Y

76

numerical values for the polynomial coefficients. The program used a
frequency scaling value of 1000.0 and easily computed the required trans-

fer functions as (shown scaled):

P(s) = (5;7x|0_6 + 3.1667xlo'5s)/(o.o'+ 3.9651x10 '

+ 6.7530xlo°sz-+1.0569xlo‘s3-+5.592xlo°s“4-55) (6.18)
F(s) P(s) = P(s) | A | (6.19)
L(s) =L (s) =0 | (6.20)
| ' -1 -1 | -1 2
Po(s) = (3.9651x10 +8.8205x10 s +L4.2510x10 's
-2 3 -1 0
+ 6.6667x10 “s°)/(3.9651x10 ' +6.7531x10"s
+1.0569x10's2 +5.5917x10%s3 + s (6.21)
FO(S) =] (6.22)
Po(s) =] : (6.23)
F(s) P (s) = P_(s) . (6.24)

The Ps(s) matrix was set to unity by the preprocessor program, but
the saturation point to be protected was at the output of the gyro inte-

grator. 'Ps(s) was set manually to be
P_(s) = 1.0x107%/s . (6.25)

Since the effects of the spring K were removed, the system was capa-
ble of tracking a step type input with zero steady-state error; there-

fore, Gu(s) was defined as

7

6, (s) = -1.0x10° /s2 . ” (6.26)

The spectral density Gd(s) was defined to be the function shown in Equation

77

(6.14) and when scaled is defined as

10 4

52 4 6.0025x10" 1%y,

18 6. 1466x10"

3

Gd(s) = (9.83h5xf0'

6

(9.8345x10 ° - 6.272x10° sz-+1.05“) ; (6.27)

]

The spectral density of the measurement noise was assumed as

B e

6 (s) = 1.0x107° ‘ | (6.28)
and
G,(s) = 0.0 . - (6.29)
Matrivat, the transient weighting matrix, was set as
Q = 1.0 (6.30)
and for the first design to be tested, the saturation weighting constant,
‘k, was set as
k =1.0. (6.31)
The synthesis program was set to initially use 24 significant digits
and then to use 10 significant digits after the spectral factorization
steps. The program then computed the controller to be
K(s/a] +1) .
s C(s) = T7e +1) (6.32)
i — | | |
8
where
K = 597.24 _ (6.33a)
-2
a = 6.51x10 (6.33b)
-2
B, = 7.59x10 ~ . (6.33c)

. o

78

The roots shown are the scaled roots obtaimed from the synthesis program
and the unscaled roots are obtained by multiplying these values by 1.000.

Figures 10 and 11 show the open and closed loop response of the orig-

~inal, unsimplified stabilization system resulting from the use of the com-

puted controller. Figure 12 shows the PSD of the rate error due to the

disturbance. Comparison of Figure 12 with Figure 6 shows that the use of

the new controller resulted in significant reduction of system perfor-

mance.

The synthesis process was repeated with a saturation weighting value,
k, set equal to I.Ox10—8. When the synthesis program was executed for
this run, the number of significant digits had to be reduced to seven
after the spectral factorization steps. The program computed the new

controller to be (unscaled)

K(S/a]+l)(s/a2+l)(S/u3+l)(S/&3+l)

N VN [V I [R OV (6:34)
where

K=18571.2 (6.35a)
@y = 65.4 | | (6.35b)
a, = 1258.0 (6.35¢)
a, = 2134.0 + j533.3 ' (6.35d)
By = 3800.0 (6.35e)
B, = 1806.0 (6.35F)
By = 1788.0 + j2634.0 . (6.35g)

It was observed that the numerator roots a, and oy were fairly

2

close to the denominator roots 32 and 33, so the alternate controller

AMPLITUDE Db)

20
0
~20k~~ 0
40 -90
_60 ~180
-80 —270
-100 -360
_120 450
~149 10 700 T

FREQUENCY (Hz)

Figure 10. Open Loop Reéponse of Original Stabilization
System With New Controller for k = 1.0

PHASE (DEGREES)

79

20 T T
o
-20 10
8 -40 {-90
0 @
> -60 -180 W
5 i
- G
s -80 4-270 W
< 8
1 ®
=100 -360 @
I
(a
-120 -450
- ! ! -540
1401 10 100 1000
FREQUENCY (Hz)
Figure 11. Cldsed Loop Response of Original Stabilization

System With New Controller for k = 1.0

80.

RATE ERROR PSD (Db)

-]]
1303 10 100 1000
FREQUENCY. (Hz)
Figure 12. PSD of Rate Error in Original

Stabilization System With
New Controller and k = 1.0

81

¥

82

K(s/u] +1)

C(S) = 7'578—]—_-'_—-1—)- . o . (636)

where
K = 18571.2 | ' (6.37a)
o = 65.3 ' (6.37b)
B, = 1806.0 | (6.37¢)

was analyzed along with the controller of Equation (6.34). The fesult of
the anaiysis'showed vefy little differencé in performance, so the results
of the analysfs for the simpler, suboptimal controller is presented here.

Figures 13 and IA show the open loop and closed loop responses of
the original stabilization system reéulting from the use of the control-
ler defined in Equation (6.36). When the closed-loop response of Figure
14 is compared with the original closed-loop response of Figure 8, it can
be seen that the bandwidth has been increased and the resonance peak
around 10 Hz has been significanfly reduced.

Figure 15 shows the PSD of the rate error due to the disturbance.

. Comparison of'Figure 15 with Figure 6 shows significant improvement in

the ability of the stabilization system to reject the disturbance enter-
ing the loop. |

An interesting measure of performance is illustrated in the compari-
sons of Figure 16. In this figure the cumulative RMS power in the rate
error of the stabilization system for the different controllers is plot-
ted. The cumulative RMS levels at 1600 Hz ére representative of the
total RMS in the rate error resulting from the disturbance. The objec-
tive of the optimal controller design was the minimization of the mean-

square rate error; therefore, the curves in Figure 16 provide an

Pt

AMPLITUDE (Db)

60 . . 90

40 0

20 H{-90

0 ~-180
~20 -270
-40 -360
-60 -450
~80; 10 100 1()0—0540

FREQUENCY (Hz)

Figure 13. Open Loop Response of the Original

Stabilization System With Ngw
Controller and k = 1.0 x 10~

PHASE (DEGREES)

83

40

20

®)

AMPLITUDE (Db)
N
®)

Figure 14.

T

10 100 - 1000
FREQUENCY (Hz)

Closed Loop Response of the Original
Stabilization System With New
Controller and k = 1.0 x 1078

PHASE (DEGREES)

84

RATE ERROR PSD (Db)

85

-100

-110

-120}

-130

| 1
1 10 100
FREQUENCY (Hz)

Figure 15. PSD of Rate Error in Original Stabiliz
With New Controller and k = 1.0x 10"

gtion System

1000

o AR AR

SRR

O PRI

86

10.0 Y Y - — ﬁ

Full . :
Controller
L k=LO

Original
Controller

CUM. POWER %105
(8]
(@]
}

‘Reduced

2.5T !
/ Controlier
, k=10x10"8
/
Controller
k=1,0x10"8

! 10 100 1000
FREQUENCY (Hz) E

Figure 16. Comparison of the Cumulative RMS Power
in the Rate Error of the Original
Systems for Various Controllers

RO

g BT

«T

87

indication of how well that objective was achieved. It is also interest-
ing to note that the use of the new controllers (with k = l.0x10_8)tends
to reduce the power levels in the lower frequency region.

It should be noted that the analytic disturbance PSD function (Equa-
tion (6.1&)) is flat after 100 Hz. THis causes the rate errof RMS levels
of'Figure 16 to be high; however, if the PSD function were madg to de-
crease after 100 Hz, the levels Qould be lower. The.flat PSD function
waé uséd for the synthesis because actual PSD data were uncertéfn after
100 Hz.

Finally, the open and closed]oop»responses of thg sfmplified sta-
bilization system with the control]ér'of Equation (5.56) are shown in
Figures 17 and 18, respectively. Comparison of these figures with Fig-

ures 14 and 15 shows the use of the simplified model for the controller

designs was reasonable.
Example Three

In this exampfe, the design of two-input two-outpuf controller for
the plant shown in Figure 19 was attempted. The function definifions for
the various blocks shown in the figure are the same as those for Figuré 9
and are listed in Table Ill. In this example, the simplified plant of
example qu has been expanded to include an ideal tracker. The integrat-
or representing the rate integrating gyro has been removed from the front
of the gimbal drive system and its output was designated as a plant out-
put.

The general model representation was used to compute the transfer

~ function matrices for the synthesis program. The plant input was desig-

nated as r, and r

] 99 the plant output was designated as Rp(S) and Rp(é).

T T 90
—40
60 -90
~ 40
a
< 20 -180
A
D 0
=
T -20 270
=
<
-40
-60 ! L -360
1 10 100 1000

FREQUENCY (Hz)

Figure 17. Open Loop Response of the Simplified Stabilization
System With New Controller and k = 1.0 x 10~

PHASE (DEGREES)

88

AMPLITUDE (Db)

PHASE (DEGREES)

T T 90
0
-90
-180
=270
N
-60 L l -
1 10 : 100 1000360
FREQUENCY (Hz)
Figure 13. Closed Loop Response of the Simplified Stabilization .

System With New Controller and k = 1.0 x 10”

39

di

Figure 19. Block Diagram of the Plant Used for the Controller
Synthesis Process of Example Three

06

<R

91

The disturbance input was again designated to be d No noise input was

r
considered in this example. The FORTRAN version of the model preproces-
sor was used and the polynomials were frequency scaled using a scale fac-

tor of 100.0. The necessary transfer function matrices were computed as:

] Pp(s) pp,(s)

P(s) = o5y (6.38)
Pois P,y () p,,(s) |

where

3.3

p'(s) = 0.0+3.9651x10%s +6.7530x10s% + 1.0569x10°s
+‘5.59l667x1015h4-].055 (é.39a)
pyy(5) = 3.9651x10' +6.7530x10"s +1.0569x10's
+ 5.591667x10 's3 +1.0x10"2s" | (6.39b)
P, (s) = -5.7x10"" - 3.1667x10™%s | (6.39¢)
pyy(s) = by, (5) | (6.394)
P,y (s) =0 | (6.39f)
F(s) P(s) = P(s) (6.40)
L(s) = L (s) = 0 | (6.41)
| ap(s) ap,(s)
PO(S) = 5TEY qZI(S) qZZ(S) . (6.42)

and

92

a;,(s) = ~3.9651x10" - 8.8205x10% - 4.2510x10"'s?

- 6.6667x10 s> (6.43b)
qp,(s) =0 o | | (6.43b)
421(5) =0 | - (6.43c)
qy,(s) = -q”(S) ‘ | ' - (6.43d)
F(s) = 0 - C (6.h)
F(s) P_(s) = P_(s) - | (6.45)

1 0
P (s) = . (6.46)

3 0 1

The spectral density matrix for the input was defined as

0 .0 v
Gu(s) = 0 _]'Oﬁ;0_7 . (6.47)
s

The entries in this matrix indicated that the output of the gyro is re-
quired to stay close to zero and that the pointing angle is required to
follow a step type input. The same disturbance function used for exam-

ple two was used in this example; therefore,

14 10 4

6y(s) = (9.8345x10° - 6.1466x10 752 +6.0025x10" 1%y /

(9.8345x10"2 -6.272x]0-]sz +1.05[*). (6.48)

The remaining spectral density matrices were zero.

The transient weight matrix was assumed to be

93

o - | (6.49)

and the saturation weighting constant, k = 1, was assumed.
‘The prototype synthesis program was not able to compute the optimal

% controller due to convergence problems encountered at the matrix spec-
i ' .
tral factorization steps. The underlying reasons are best illustrated

by examining the numerical values of one of the matrices which had to be

factored. The matrix from Equation (A.12) was computed by the program

to be

"ls)rypls)
A8 (PT(-5)QP(s) - kP (-5)P ()R (5) =

rop (s} ryy(s)

(6.50)

where the polynomial elements are (5 significant digits are shown but

the computations were done with 24 significant digits):

- 4.2196x10%2 1k

3 +2.1921x10' 's

(s)

1.393x10

r

5.l772xlO]]s6-f7.69]2x10958-4.3172x107slo

1.2033x10°5 12 - 1.6969x10%s ™ + 9.9723x10"2s'® (6.51a)

+

rlZ(S) = 3.6845x]0-h-1.0315x10-25- l.8375x10’+s2

5.0004x10°s3 - 8.4279x103s " - 1.1804x10%s>

+

558 4+ 8.5845x103s7 - 1.1878x103s°

4

1.1925x10

1.9

7.9867x10 's2 +3.2551x10%s 10 - 5.4130x107 25!

3.2150x10 3512 +8.4791x10 s '3 (6.51b)

94

ryp(s) = r,(-s) | (6.51c)
ryp(s) = 2.3423x1070 - 1.1356xlo°sz+2.6835xlo°s“
| - 2.6661x1072s8 +7.3018x107%5°
- 7.2094x1078510 H _ (6.51d)

Based on the investigations of spectral factorization and frequency scal-

-

ing, it is believed that the large range in the magnitudes of the coeffi-
cienfs within each polynomial was the major reason that the spectral fac-
torization failed. The values shown in Equation (6.51) resulted from the
scale factor of 100.0 mentioned earlier. Other attempts used scale
factors of 1000.0 and 10000.0 with no success.

The failure of the synthesis program in this exampfe does not mean
that smajler order designs wi]l fail. There is every indication that the

program can succeed for smaller, well-conditioned problems.

W

- T

-

CHAPTER VI
SUMMARY AND RECOMMENDAT IONS
Summary

Computer implementation of frequency-domain controller design the-

ory has been accomplished by this research. The underlying causes of

many of the numerical problems associated with the manipulation of ra-
tional polynomial matrices have been identified and arithmetic and al-
gorithmic fmprovements demonstrated.

The system size which can be successfully treated with the synthe-
sis program is.limited but significantfy greater than that whfch can be
conveniently treated manually. The cabability of the synthesis program
and theory was demonstrated in the second example of Chapter VI. It is
believed that the success attained by the program in that example will
provide the stimulus needed for continued research in this area.

Investigations made during the course of this research indicate
that the best arithmetic for use in frequency-domain controller aesign
prbgrams is the floating-point arithmeti;. As the prototype progrém
developed byAthis study evolves toward a production oriented program,
the use of symbolic systems Sueh as REDUCE combined with floating-point
type systems may prove to be beneficial. The precision of floating-
point arithmetic is the main factor limiting the size of systems which
can be treated by the synthesis program. The computation of controllers

for large multivariable systems requires arithmetic precision which

95

R -k

B

96

exceeds the hard capabilities of all modern computers. The use of
software to increase the precision of the arithmetic is an alternative

which needs to be investigated.
Contributions

The main contributions of this research are summarized as follows:

1. A structure for frequency-domain controllef design program§ has
been deffned and é prototype program has been developed around this
structure.

2. A generalized model representation has been developed and dem-
onstrated.

3. Direct polynomial representation‘and floating-point computation
have been determined best for the controller synthesis program. This
choice was_made based upon investigations of the various exact computa-
tion methods and the various floating-point computation methods;

L. Precision, calculation noise, and large magnitude differences
in polynomial coefficienté were identified as the underlyingAcauses of
numerical difficulties associated with the use of.floating-point arith;
metic in the synthesis program. Methods were deviséd which can bé used
to overcome these difficulties.

5. It was shown that:frequency-scaling significantly improved the
performance of the synthesis program and especially the spectral factor-
ization.

6. The machine computation of controllers for a real, non-trivial
plant has been demonstrated for the first time.

7. The performance of the rate stabilization loop of an airborne

e

i, .

97

laser pointing and tracking system has been improved by the use of the

synthesis program.
Recommendations

It is recommended that research be continued as follows:

1. Investigate the manner in which-coefficient inacéuracies affect
the roots of pqunomials and develop techniques which canlbe ptilized to
avoid increasing the precision of arithmetic within frequency-domain syn-
thesis programs. |

2. Investigate the computer implementation’of suboptimal frequency-
domain synthesis theory using the me#hods deve]opéd by this research.

3. Determine the usefulness of high-precision software arithmetic
to synthesis programs. |

4., Continue the investigation of’the root representation method
with emphasis on improving thé addition operation. Develop algorithms

to perform spectral factorization using the root representation method.

(1]

(2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

(1]

A SELECTED BIBLIOGRAPHY

Kalman, R. E. "Contributions to the Theory of Optimal Control."
Bulletin of the: Mex1can Mathematical SOC|ety, Second Series

5 (1960), pp. 102-119.

""'Special Issue on the Linear-Quadratic-Gaussian Control Problem."
IEEE Transactions on Automatic Control, Vol. AC-16 (December,

1971)"

Wiéner, N. Extrapolation, Interpolation, and Smoothing Qf.Station-
ary Time Series. Cambridge, Massachusetts: MIT Press, 1949.

Newton, G. C., Kaiser, J. F., and Gould, L. A. Aha]yfical Design
of Linear Feedback Controls. New York: John Wiley.and Sons,
Inc.,]957, :

Amara, R. C. 'The Linear Least Squares Synthesis of Multivariable
.Control Systems.' Transactions of the AIEE, Vol. 42, Part 2

(May, 1959), pp. 115-120.

Hsieh, H. C., and Leondes, C. T. ''Techniques for the Optimum
Synthesis of Multipole Control Systems with Random Processes
as Inputs.'" IRE Transactions on Automatic Control Systems,
Vol. AC-4 (December, 1959), pp. 212-231.

Davis, M. C. '"Factoring the Spectral Matrix.'" |IEEE Transactions
on Automatic Control, Vol. AC-8 (October, 1963), pp. 296-305.

Bongiorno, J. J. 'Minimum Sensitivity Design of Linear Multi-
variable Feedback Control Systems by Matrix Spectral Factor-
“ization.'" |EEE Transactions on Automatic Control, Vol. AC-14
(December, 1969), pp. 665-673.

Freeman, H. "A Synthesis Method for Multipole Control Systems.'
Transactions of the AIEE, Vol. 76, Part 2 (March, 1957),
pp. 28-31.

Freeman, H. !'Stability and Physical Realizability Considerations
in the Synthesis of Multipole Control Systems.' Transactions

of the AIEE, Vol. 35, Part 2 (March, 1958), pp. 1-5.

Chen, C. T. ”Representations of Linear Time-Invarient Composite
Systems IEEE Transactions on Automatic Control, Vol. AC-13,
3 (June, 1968), pp. 227-283.

98

B oaad

99

[12] Chen, C. T. "Stability of Linear Multivariable Feedback Systems.'
Proceedings of the IEE, Vol. 56 (May, 1968), pp. 821-828.

[13] Ragazzini, J. R., and Franklin, G. F. Sampled Data Control
Systems. New York: McGraw-Hill, 1958.

[14] Bigelow, S. C. 'The Design of Analog Computer Compensated Control
Systems.' Transactions gf_the AIEE, Vol. 77 (November,
1958), pp. h09-415.

[15]° Weston, J. E., and Bongiorno, J. J. "Extension of Analytical
Design Techniques to Multivariable Feedback Control Systems.'
IEEE Transactions on Automatic Control, Vol. AC-17, No. 5
(October, 1972), pp. 613-620.

[16] Fallside, F., and Seraji, H. “DeS|gn of Optimal Systems by a
Frequency-Domain Technique." Proceedings of the 1EE, Vol.
117, No. 10 (October, 1970), pp. 2017-2024.

[17] Youla, D. C., Bongiorno, J. J., and Lu, C. N. 'Single-Loop Feed-
back Stabilization of Linear Multivariable Dynamical Plants.
Automatica, Vol. 10 (1974), pp. 159-173.

[18] Lanning, J. H., and Battin, R. H. Random Processes in Automatic
Control. New York: McGraw-Hill, 1956.

[19] Horowitz, 1. M. Synthesis of Feedback Systems. New York:
Academic Press, 1963.

[20] Kwakernaak; H. K., and Sivan, R. Linear Optimal Control Systems.
New York: Wiley-Interscience, 1972.

[21] Rosenbrock. H. H. 'Design of Multivariable Control Systems Using

the Inverse Nyquist Array." Proceedings of the IEE, Vol.
116 (1969), pp. 1929-1986. -

[22] Belletrutti, J., and MacFarlane, A. G. J. '"Characteristic Loci
Techniques in Multivariable Control System Design.'' Pro-
ceedings of the IEE, Vol. 118 (1971), pp. 1291-1297.

[23] * MacFarlane, A. G. J. ''Use of Characteristic Transfer Functions
in the Design of Multivariable Control Systems.' Proceedings
of the 2nd IFAC Conference on Multivariable Systems Theorij
Paper No. 1.3.L, Dusseldorf (1971).

[24] Porter, B., and Crowley, R. Modal Control Theory and Applica-
tions. New York: Harper and Row, 1972.

[25] Rosenbrock, H. H. Computer-Aided Control System Design. New
York: Academic Press, 1974.

[26]

[271
[28]
[29]
[30]
[31]

[32]

[33]
[34]
[35]
[36]

[37]

100

MacFérlane, A. G. J. "A Survey of Some Recent Resufts in Linear
Multivariable Feedback Theory.'' Automatica, Vol. 8 (1972),

pp. 455-492.
Horowitz, 1. M., and Shaked, U. ''Superiority of Transfer Function
Over State-Variable Methods in Linear Time-lnvariant Feedback
" Systems Design.'' [IEEE Transactions on Automatic Control,

Vol. AC-20, No. 1 (February, 1975).

Youla, D. C., Bongiorno, J. J., and Jabr, H. A. ''Modern Wiener-
Hopf Design of Optimal Controllers Part |: The Single-
Input-Output Case.' |IEEE Transactions on Automatic Control,

Vol. AC-21, No. 1 (February, 1976), pp. 3-13.

Youla, D. C., Bongiorno, J. J., and Jabr, H. A. ''Modern Wiener-
Hopf Design of Optimal Controllers Part Il: The Multivari-
able Case.'" 1EEE Transactions on Automatic Control, Vol.
AC-21, No. 3 (June, 1976), pp. 319-338.

MacFarlane, A. G. J. 'Return-Difference Matrix Properties for
Optimal Stationary Kalman-Bucy Filter.'" Proceedings of the
IEE, Vol. 118, No. 2 (1971), pp. 373-376.

Barrett, J. F. ''Construction of Wiener Filters Using the Return-
Difference.'! International Journal of Control, Vol. 26

(1977), pp. 797-803.

‘Shaked, U. "A General Transfer Function Approach to the Steady-

State Linear Quadratic Gaussian Stochastic Control Problems."
International Journal of Control, Vol. 24 (1976), pp. 771-
800.

Grimbal, M. J. 'Design of Stochastic Optimal Feedback Control
Systems.' Proceedings of the !EE, Vol. 125, No. 11 (1978),
pp. 1275-1284.

Bongiorno, J. J., and Youla, D. C. 'On the Design of Single-Loop
Single-Input-Output Feedback Control Systems in the Complex-
Frequency Domain.'" 1EEE Transactions on Automatic Control,
Vol. AC-22, No. 3 (June, 1977), pp. 416-423.

Hearn, A. C. REDUCE 2 User's Manual. 2nd Ed. Salt Lake City,
Utah: University of Utah, UCP-19, March, 1973. '

Aho, A. V., Hopcroft; J. E., and Ullman, J. D. The Design and
Analysis of Computer Algorithms. Reading, Massachusetts:
Addison-Wesley, 1974.

Knuth, D. E. The Art of Computer Programming, Vol. 2, Semi Numer-
ical Algorithms. Reading, Massachusetts: Addison-Wesley,

1971.

[38]

[39]

[40]

[41]

[42]

[43]

441

[45]

[46]

[471]

[48]

[49]

(50]

101

McClellan, M. T. '"The Exact Solution of Systems of Linear Equa-
tions with Polynomial Coefficients." Journal of the Associa-
tion for Computing Machinery, Vol. 20 (1973), pp. 563-588.

HoroWitz, E., and Sahni, S. 'On Computing the Exact Determinant
of Matrices with Polynomial Enteries.'" Journal of the
Association for Computing Machinery, Vol. 22 - (1975), pp.
38-50.

Gentleman, W. M., and Johnson, S. C. 'Analysis of Algorithms,
A Case Study: Determinants of Matrices with Polynomial
Entries.'" Association for Computing Machinery Transactions
on Mathematical Software, Vol. 2 (1976), pp. 232-241.

Rao, T. M., Krishnamurthy, E. V., and Subramanian, K. "Finite-
Segment p-adic Number Systems with Applications to Exact
Computation.' Proceedings of the Indian Academy of Science,

Vol. 81, No. 2 (1975), pp. 58-79.

Krishnamurthy, E. V. '"Exact lnversion of a Rational Polynomial
Matrix Using Finite Field Transforms.'" SIAM Journal of
Applied Mathematics, Vol. 35, No. 3 (November, 1978), pp.
L53-464, : -

Ramachandran, V. '"Exact Reduction of a Polynomial Matrix to the
Smith Normal Form.'" |EEE Transactions on Automatic Control,

Vol. AC-24, No. 4 (August, 1979), pp- 638-641.

Youla, D. C. 'On the Factorization of Rational Matrices.' IRE
Transactions.on Information Theory, Vol. 7 (July, 1961), pp.
172-189.

Tuel, W. G. '"Computer Algorithm for Spectral Factorization of
Rational Matrices.'" IBM Journal of Research and Development,
Vol. 12 (1968), pp. 163-170.

Anderson, B. D., Hitz, K. L., and Diem, N. D. 'Recursive Al-
gorithm for Spectral Factorization.' |IEEE Transactions on
Circuits and Systems, Vol. CAS-21, No. 6 (November, 1974),

PP.

Davis, M. C. ''Factoring the Spectral Matrix.'" 1EEE Transactions
on Automatic Control, Vol. AC-8, No. 5 (October, 1963), pp.
296-305. . :

Grimble, M. J. !'"'Factorization Procedure for a Class of Rational
Matrices.'" International Journal of Control, Vol. 28, No. I

(1978), pp. 105-111.

Downs, T. '"On the Inversion of a Matrix of Rational Functions."
Linear Algebra Applications, Vol. 4 (1971), pp. 1-10.

Munko, M., and Zakian, V. '"Inversion of Rational Polynomial
Matrices.' Electronic Letters, Vol. 6 (1970), pp. 629-630.

[51]

[52]
(53]

[54]

[551

[56]
[57]
[58]
(59]

(60]

[61]
[62]
[63]

[64]

102

Pace, |. S., and Barnett, S. "Efficient Algorithms for Linear
System Calculations Part 1--Smith Form and Common Divisor of
Polynomial Matrices.' lInternational Journal of Systems

Science, Vol. 5, No. 5 (1974), pp. 403-L11.
Barnett, S. ''Some Topics in Algebraic Systems Theory: A Survey."
Recent Mathematical Developments in Control. Ed. D. J. Bell.
New York: Academic Press, 1973, pp. 323-344.

Collins, G. E. '"PM a System for Polynomial Manipulation.' Com-
munications of the Association for Computing Machinery, Vol.

9, No. 8 (August, 1966), pp. 578-589.

System 1360 Scientific Subroutine Package, Version Ill, Program-

mer's Manual. White Plains, New York: |IBM Corporation,
Technical Publications Department, No. H20-0205-3, 1969.

Pace, |. S., and Barnett, S. ‘'Comparison of Algorithms for Cal-
culation of G.C.D. of Polynomials.!" International Journal
of Systems Science, Vol. 4, No. 2 (1973), pp. 211-226.

Matthew, G. K. "An Alternative to Euclid's Algorithm.'" Trans-
actions of the ASME, Vol. 101 (October, 1979), pp. 582-586.

Sankarén, B. "A New Computer Technique of Root Locus Analysis."
(Unpub. M.S. thesis, Oklahoma State University, 1979) .

User Information for the FRQRSP Frequency Response Program.

Stillwater, Oklahoma: Oklahoma State University, Report
No. ER-75-R-109-012, January, 1978.

Rosenbrock. H. H. State-Space and Multivariable Theory. New
York: Wiley-Interscience, 1970.

Sterbenz, P. H. Floating Point Computation. New Jersey:
Prentice-Hall, 197k, :

IBM 0S FORTRAN IV (H Extended) Compiler Programmer's Guide. 3rd
Ed. San Jose, California: |BM Corporation, No. SC8-6852-2,
1974,

Brent, R. P.. "A Fortran Multiple Precision Arithmetic Package."
Association for Computing Machinery Transactions on Math-
matical Software, Vol. 4 (1978), pp. 57-70.

Gantmacher, F. R. The Theory gi_Matrices,'Volume One. New York:
Chelsea, 1977.

Jabr, H. A. Modern Analytical Design of Optimal Multivariable
Control Systems. Ph.D. dissertation, Polytechnic Institute

of New York, Farmingdale, 1975.

APPENDIX A
OPTIMAL CONTROLLER DESIGN THEORY

This appendix summarizes the main results of Youla, Bongiorné, and
Jabr [29] and'serves only as a reference. Conditions for the existence
of an optimal controller C(s) are presented along with sufficient assump-
tions on the model, as indicated in Figure 1. The procedure for determin-
ing the optimal controller is also outlined. The defiﬁitions, theorems,
and lemmas presented here were obtained directly from Reference [29], and

the proofs have been omitted but may be found in the References.
Definitions, Conditions, and Assumptions

Definition 1

The plant P(s) and feedback compensator F(s) form an admissible pair

if each is individually free of unstable hidden modes and]
+ -+ +,

(The monic polynomials w+(s) and ¥ (s) absorb all the zeros: of ¥(s) in

]Let the distinct finite poles of A(s) be denoted by s, and their

associated McMillian degrees by Gi. The monic polynomial

s,
(s-s.) '

vals) =

W~

1

is the characteristic denominator of A(s). ¢t denotes the closed right-
half of the s-plane and C denotes the open left-hand of the s-plane.

103

104

+ -
C and C , respectively, and, up to a multiplicative constant, y(s) =

+

v (s) v (s).)
Lemma |

If the plant P(s), the feedback compensator F(s), and the C(s) are
free of unstable hidden modes, the closed-loop of Figure 1 is asymptoti-
cally stable if and only if

) WP(S) wc(s) e (s)

$(s) = I O) (A.2)

is a strict Hurwitz polynomial.

Lemma 2

There exists a controller stabilizing the given plant and feedback
compensator in the closed-loop configuration of Figure 1 if and only if

the pair P(s), F(s) is admissible.
Lemma 3

Let P(s), F(s) form an admissible pair. Let
F(s) P(s) = A"'(s) B(s) = B, (s) A]'(s) (A.3)

where the pairs A(s), B(s) and B](s), A](s) form any left-right coprime
polynomial decomposition of F(s) P(s). Select polynomial matrices X(s)

and Y(s) such that
A(s) X(s) + B(s) Y(s) = 'n' (A.4)

Then, (1) the closed-loop of Figure 1 is asymptotically stable if and

only if

R(s) = (Y(s) + Aj(s) K(s)) A(s), , (A.5)

105

' ' . .
where K(s) is any mxn real rational matrix analytic in C and which

satisfies the constraint
det (X(s) - B](s) K(s)) # 0. (A.6)

(2) The stabilizing cbntroller associated with a particular cHoice.oFAad-'

missible K(s) possesses the transfer matrix

Cs) = (¥(s) + A (s) K(s)) (X(s) = B, (s) K(s) ™' .~ (A7)
If C(s) is definéd in this manner, ¢(s) from Eqﬁation (A.2) will be strict

Hurwitz.

Assumption 1

The plant and feedback compensator form an admissible pair, the feed-
forward compensator is asymptotically stable, and the transfer matrices

P(s), F(s), and L(s) are prescribed in advance.

Assumption 2

- T, .
Po(s), Fo(s), Lo(s), Q(s) = Ps(s) PS(s), and spectral densities

Gu(s), Gd(s), Gm(s), Gz(s) are given. |If Po(s), Fo(s), or Lo(s) repre-
sents a physical block, they must be stable. However, if they are merely
part of the paper modeling, it is possible to relax stability requirement.

The input signal, load disturbance, and measurement noises are stochasti-

cally independent.

Assumpfion 3

-1

Let P(;) = A2

(s) Bz(s)'be any left-coprime factorization of P(s)

and let

6, (s) =‘F0(s) 6_(s) FZ(-S) +1(s) 6,(s) LZ(-S). (A.8)

o

LT

106

.The matr}cgs Q(s) = PI(-s) Ps(s), F(s), (F(s) -In) P(s), Az(s) Gu(s) A;(-SL

Az(s) (Po(é) Gd(s) Pl(-s)) A;(-s),'L(s) Gd(s) LT(-s), and Gmﬁ(s) are ana-

lytic on the finite s= jw axis.

Assumption 4 .

Let k be any positive constant,
_ . : T,
G(s) = Gu(s) + Pd(s) Gd(s) Pd(s) + sz(s) (A.9)
and

Pd(s) = F(s) Po(s) + L(s) . »(A.lO)

The matrices A(s) G(s) A'(-s) and ATk-s) (PT(-s) P(s) + ka(s)) A, (s) are

nonsingular on.the finite s= jw axis.

Assumption 5

The data satisfy the order relations2

6, (s) < 0(1/s%) (A.11a)

Po(s) 64(s) PO(=s) < 0(1/5") (A.11b)

6y(s) > 5721 (A.1lc) |

P(s) = 0(s") . (A.11d)

0(P) + O(F) < u (A.11e) E

2A(s) < 0(s") means no entry in A(s) grows faster than s" as s>,
The order of A(s) equals r, i.e., A(s) = 0(s") if (1) A(s) < 0(s"), and
(2) at least one entry grows exactly like s". For A(s) square, A(s) =
sT'| abbreviates

limit s ' A(s) = A_ (A constant nonsingular matrix)
s>

A(s) = s"I implies A(s) = O(Sr) but not conversely.

107

' and
(PT(-s) P(s) + kQ(s)) G(s)=xs’I , | (A.11F)
where i < 1 u > max(v -1, -1).

The Optimal Controller

It can be shown that under Assumptions 1 through 5 of the previous
section, the optimal K(s), which satisfies Equation (A.6) and makes E

finite, can be found in the following manner.
Theorem 1

1. Construct two square real rational matrices A(s), Q(s) analytic

tqgether with their inverses in C' such that3
AJ(PTQP-KkQ) A =171 o (A.12)
and
AcA” =g o”. (A.13)
2 Let
= AT p* Q, (6, + POGdPZ) A (A.1k)

and choose any two real polynomial matrices X(s), Y(s) such that

A(s) X(s) + B(s) Y(s) = I : (A.15)

3. The transfer matrix of the optimal controller is given by

C=(Y+AK (X- B]K)" (A.16)

k

3The indeterminate s will be dropped from subsequent representations
where there will be no confusion. A*(s) = AT(-s), A™%(s) = (A*(s))" 1.

agli i

108

where

k=0 (" Ty, {AA;]YQ}_)Q-] - A;] Y, (A.17)

or alternatively

Q - EPHO) , . ' (A.18)

o= A AT @ Ty, Al vy) L 5 (A.19)

The (nonhidden) poles of the optimally compensated loop are precisely the

zeros of the strict Hurwitz polynomial

o) ve(s) wo(s) (520
S = o
Vep(s)

plus the finite poles of K(s), each counted according to its McMillian de-

gree.
Corollary 1

Suppose F(s) P(s) is analytic in ¢*. Then

-1

C = Hé(Qr - FPHO) (A.21)
where
H, = A']{A;* rg;*}+ (A.22)
(P*Qtp + kQ) = Ai A (A.23)
G=0 | (A.24)

hln the partial fraction expansion {+}_ + {+} + {+}_ of any rational
matrix, {<} is the part associated with the pole at infinity and {-} ,
{«}_ the parts associated with all the finite poles in C~ and C+, respec-
tively.

PR

B i

109

Fr =P Qt(Gu + PoGde) : » (A.25)

and A(S)r’ Sz(s)r are square, real rational matrices analytic together

. . . . +
with their inverses in C .

Corollary 2

Let
T | | (A.26)
b =1 A;] Y Q . | (A.27)
c ={a-b}_ (A.28)
and
o =0 (6, +PGP)-a a vt e (A.29)

then the minimum cost Emin is given by
. jm
2 E = Trf. o(s)ds. (A.30)
- joo |
If P(s) F(s) is analytic in ¢t (stable case), then

o = Qt(Gu + POGdPO) - {a}+ {a}+. (A.31)

Corollary 3

‘ +
Let P(s) be square and analytic together with its inverse in C , let
F=1 (gnity feedback), let k = 0 (no saturation constraint), and assume
feedforward compensation is not employed. Then, if G and Qt(Gu-FPOGdP;)

are diagonal matrices, the optimal controller C(s) satisfies the noninter-

action condition

P(s) C(s) = diagonal matrix. (A.32)

R N

APPENDIX B
‘PROTOTYPE PROGRAM. STRUCTURE

An important achievement resulting from this study was the.develép-
ment of a prototype computer program for frequency-domain synthegis of
optimal controllers. This appendix describes the logical structure of
the program and its features. The program was coded in FORTRAN on an
IBM 370 computer; however, the information presented here can be used to
develop similar programs in FORTRAN on different machines.

The process of controller design'cohsists of three parts. Part one
is the model preparation; part two is the actual synthesis; and.part
three is the ahalysis. Model preparation coﬁsists of the process of
generating the necessary data for the synthesis using the generalized
model representation theory presented in Chapter Il1l.. The definition of
syhthesis and analysis is obvious. Rather than include all three parts
in one large program, it was more efficient to develop each part into a
separate program. The reason for this was that the model preparation
needed only to be performed one time, while the synthesis program would
usually be run several times for trade-off studies. The analysisvwas a
separate program due mainly to the fact that a‘program already existed
for frequency-domain analysis [58]. This program had analysis capabf]-
ities far beyond any that could be efficientTy included directly in the
synthesis program.

Figure 20 shows the'data flow through the entire controller design

process. For the model preparation program, two options were made avail-

110

11

MODEL
SUBROUTINE

SYMBOLIC -@— OPTION 1
MODEL DATA

OPTION 2 —»

FORTRAN
REDUCE BASED MODEL INPUT DATA
MODEL PREPROCESSOR PREPROCESSOR FOR

-PROGRAM PROGRAM

" CONTROL -

FORTRAN SUBROUTINE
MODEL SOURCE

AR (s)
CODE =

FILE CONTAINING

E’ HJCOEFFICIENTS
FOR POLYNOMIALS
NUMERICAL IN TRANSFER
.VALUES FORTRAN FUNCTION
COMPILIER MATRICES
SUBROUTINE

SUBROUTINE

MODEL MODEL

SYNTHESIS

PROGRAM
INPUT DATA,

PROGRAM

CONTROL DATA NOT INCLUDED
IN PROTOTYPE

DESIGN CONTROL SYSTEM
OUTPUT MODEL FOR
DATA

ANALYSIS

FREQUENCY-DOMAIN
ANALYSIS PROGRAM

{ - —

=) T
< N

W

——
— A A - e

ANALYSIS RESULTS

Figure 20. Data Flow Through the Controller Synthesis System

Dot g

112

able. The first option consisted of a REDUCE program to which symbolic
information describing the matrices Ap(s) and Bp(s) (see Chapter I11)

was input. Additional information was also input which described the

configuration of the plant, feedback measurement system, etc.. The

REDUCE program inverted the.Ap(s) matrix and performed the necessary

matrix mu]tiplies to produce the P(s), F(s)P(s), Po(s),'Fo(s), Psﬁé),

_L(s), and Lo(s) plant matrices. These matrices were written in the form

of a FORTRAN subroutine (Subroutine MODEL) by REDUCE which could be cal-

led by the synthesis program to obtain the required transfer function

matrices. The synthesis program required a data file which contained

the numerical values for the symbols used to originally define the model.

Each matrix was defined in the proper form for the synthesis pﬁogram,
that is, each matrix consisted of a matrix of polynomials and an asso-
ciated scalar divisor‘polynomial.

It was also determined that the REDUCE program could bé made to
calculate adaitiona] intermediate matrices needed for the syﬁthesis pro-
gram. Referring to‘Appendix A, these‘additiona] matrices would be the
G(s) matrix of Equation (A]9), the Pd(s) matrix of Equation (A.10), the
PT(-s)QtP(s) + kQ(s) matrix df Equation (A.12), and the PT(s)QtGu(s) +
Po(s)Gd(s)PTd(-s) part of matrix I'(s) in Equation (A.14). In order for
the REDUCE program to generate these matrice§, the spectfa] density ma-
trices Gu(s), Gd(s),'Gm(s), and Gz(s) had‘to be defined along with the
Ap(s) and Bp(s) matrices.

The second option shown in Figure 20 for the ﬁodel preparation pre-

"processor was the use of a FORTRAN-based program. The plant model was

coded in the form of a subroutine, which was called by the model prep-

aration program to define the Ap(s) and Bp(s) matrices. Instead of the

113

polynomials being represented syﬁbolically, the FORTRAN program required
that they be represented with actual numeric values for their coeffi-
cients. Once the Ap(s) matrix was inverted, it was stored jn a disk
file. Storihg the inverted Ap(s) matrix allows the model preproéessor
to retrieve it during subsequent runs for cases where only the plant
configuration is changed, thereby avoiding the same inversion‘over.and
over. Implementation of this feature in the REDUCE program proved
highly inefficient since more coﬁputer execution time was required to
read the stored Ap_l(s) matrix than was required to do the iﬁversion;

Once the FORTRAN version of the preprocessor inverted the Ap(s)
matrix, it would read the configuration data designating desifed input-
output relationships and would then write a data file which contained

~the polynomijal coefficients of the P(s); Po(s), F(s)P(s), etc. transfer
function matrices. The synthesis program obtained these matrices by
calling a special subroutine (Subroutine MODEL) which read the data file
to define the desired transfer function matrix.

The selegtion as to which preprocessor option is best can only be
madé as later research develops the prototype design system into.a more
production-oriented system. As for the prototype used in this research,
the FORTRAN option was implemented mainly due to the fact.that it was
more economical to use. The FORTRAN version was also used to study prob-
lems centered around rational polynomial matrix inversion.

The logical structure of the FORTRAN model preprocessor and the
synthesis program is basically the same. The following discussion on
the program structure applies to both the model preprocessor and the
synthesis program. Since the analysis program is already wefl docu-

mented (see Reference [58]) it will not be discussed here.

]lh

The synthésis prbgram structure is divided into.si* levels. These
levels, from highest to lowest, are:named: 1) main level, 2) executive
level, 3) general computations level, 4) special matrix operations lev-
el, 5) basic matrix arithmetic level, and 6) basic arithmetic and memory
management level. Each level (except the main level) consists of a set

of subprograms which perform operations at the specified level. In gen-

“eral, two rules apply to the routines. Rule one is the routines in one

level may only call routines in levels which are lower or it may call

routines in the same level.. No routines in one level may call higher

level routines; The secdnd rule is fhat ﬁo routine in one level may‘

perform any operation that is available at a lower level. fhese rule;
make the overall program very flexible and easily modified.

Polynomial coefficients are stored in contiguous extended precision
words of memory ordered from lowest to highest order coefficient. An
integer number is stored with each set of polynomial coefficients to
specify the number of coefficients. Polynomiél matrices are stored as
three-dimensional arrays such that the first dimension refers to indi-
vidual coefficients, the second dimension refers to the roﬁs of the ma-
frix, and the third_dimension refers to the columns of the mafrix. This
scheme keeps the coefficients of any one polynomial together in contig-
uous storage locations. A two-dimensional, integer matrix is used to
store values defining the number of coefficients for each polynomial of
the matrix. Scalar polynomial coefficients are stored in one-dimensional
arrays with a single integer vériable defining the number of coefficients
in the array.

Storage fér the coefficient arrays is allocated dynamica]ly during

program execution by the memory management systems. Dynamic array allo-

'

115

cationslailow thé synthesis program to automatically adjust the size 6f
coefficient arrays during execution to keep the amount of memory required
at a minimum. The total memory available for a particular problem is set
by the user before the program executes. The program user adjusts the

' size of'an unlabeled common block in the maih program (main level). The
main program is éomprised only of the necessary COMMON stafemehts and a
CALL statement which starts the synthesis executive program. By making
the executive program a subroutine, only the main program has to be re-
compiled when the total amount of available storage is changed. The
executive subroutine needs never to be recompiled.

Most coefficient arrays are allocated at the executive level. The
executive program determines the size requirements for the various co-
efficient arrays and calls a special subprogram of the memory management
system. The subprogram returns a suitable starting location for the
array in blank common. When the executive makes calls to.routinés at
lower levels, the starting memory address in common storage of any co-
efficient array is passed és an argument. The receiving routine refers
to.the matrix as a three dimensional matr.ix. The following transaction
I1lustrates the process:

SUBROUleE CONTROL

COMMON / / COMBUF (3000)

ISTARTA = MEMMAN (1S*N*M)

A 2%

116

CALL DECOMP (COMBUF (1SARTA), IS,N,M ...

END
SUBROUTINE DECOMP (A, ISA,N,M, ...)

DIMENSION A(I1S,N,M)

Subroutine CONTROL requests the starting location of an array for an nxm
polynomial matrix which will contain polynomials with no greater than IS
coefficients each. CONTROL then makes calls to various lower level
routines as shown. The lower level routine can now easily refer to the
individual polynomials in the matrix.

The basic arithmetic level consists of routines which add, sub-
tract, multiply, divide, and compute the GCD of polynomials. The spe-
cial addftion/subtraction routine is also at this level. By keeping
bésic arithmetic of the same level as the memory management system, the
memory management scheme can be modified without having to make codjng
changes at a higher level. As long as all higher lével routines use the
basic arithmetic level routines for any necessary polynomial operations,
then any memory‘managemenf scheme caﬁ be implemented. Since the basic
arithmetic routines are at the same level as the memory management sys-
tem, they will have to be changed as memory management changes are made.

The executive level controls the sequence in which the controller
is computed. The executive calls routines in the specific computation

level to compute the controller in the following order:

117

1. Subroutine MODEL is called to define the transfer function ma-
trices and spectral density matrices needed for the design.

2. The coprime decompositions of Equations (A.3) and (A.k) are
combufed. |

3; The matrix of Equation (A.12) is computed (but not factored).

L S

The computation is performed by first evaluating A;P".then'PA]. This

helps insure common factor cancelation between the A] and P matrices.
The results of the above evaluations are multiplied with Qt to obtain
the term ATP*QtPA]. The other term of the equation is evaluated in a
similar manner to obtain kATP:PSA]. These two matrix terms are then‘
added to form the final result.

4. The matrix computed in Step 3 is spectrally factored to obtain
A(s). A_](s) is computed in this step.

5. The matrix of Equation (A.13) is combuted by first computing
each of the following matrix terms:

AF G F A"
om?©o

AL G L A"
(o] (o}

AG A |
ALFP_+LI[FP_+L]"A".
These terms are then added together to form the required matrix.

6. The spectral factorization is performed to obtain matrix Q(s).
Q_](s) is also computed in this step.

7. ‘Matrix I'(s) of Equation (A.14) is computed in a manner similar
to that used in Step A4.

8. Matrix Ho(s) is computed according to Equation (A.19).

9. The controller is computed according to Equation (A.18).

Each specific computation routine makes extensive use of lower level

18

routines td do the required scalar and matrix polynomial operations. The
specific computation routines write all their intermediate results to the
program output listing so that the synthesis process can be monitored by
the user. Special routines are provided at the basic arithmetic level

to output both rational polynomial matrices and polynomial matrices.

Z

VITA
John Edward Perrault, Jr.
Candidate for the Degree of

Doctor of Philosophy

Thesis: COMPUTER IMPLEMENTATION OF OPTIMAL MULTIVARIABLE CONTROLLER
DESIGN IN THE FREQUENCY DOMAIN

Major Field: Mechanical Engineering
Biographical:

Personal Data: Born in Tulsa, Oklahoma, March 10, 1953, son of
John E. and Barbara C. Perrault.

Education: Graduated from Bishop Kelley High School, Tulsa,
Oklahoma, in June, 1971; received the Bachelor of Science
in Mechanical Engineering degree from the University of
Tulsa, Tulsa, Oklahoma, in June, 1975; received the Master
of Science degree from Oklahoma State University, Still-
water, Oklahoma, in May, 1977; completed the requirements
for the Doctor of Philosophy degree at Oklahoma State Uni-
versity in May, 1981.

Professional Experience: Staff Engineer, Marvel Photo Company,
Tulsa, Oklahoma, 1971-75; Graduate Research Assistant,
School of Mechanical and Aerospace Engineering, Oklahoma
State University, September, 1975-March, 1981; joined the
technical staff of Applied Technology Associates, Albuquer-
que, New Mexico, in March, 1981.

