
J
COMPUTER IMPLEMENTATION OF OPTIMAL MULTIVARIABLE

CONTROLLER DESIGN IN THE FREQUENCY DOMAIN

By

JOHN EDWARD PERRAULT, JR.
u

Bachelor of Science in Mechanical Engineering
University of Tulsa

Tulsa, Oklahoma
1975

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1977

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
May, 1981

I

fhE'"!t ·,~
1tf6I D f 1:,4c.. t&f I?-

: .

COMPUTER IMPLEMENTATION OF OPTIMAL MULTIVARIABLE

CONTROLLER DESIGN IN THE FREQUENCY DOMAIN

Thesis Approved:

Adviser

"Dean of the Graduate Co 11 ege

i i

1030826 1

ACKNOWLEDGEMENTS

Financial support for this research was provided by the Air F6rce

Weapons Laboratory (AFWL), Air Force Systems Command, Kirtland Air Force

Base, New Mexico, under Contract F29601-78-C-0038. Models for the ex

amples of Chapter IV are from the Airborne Pointing and Tracking System

currently under development at AFWL.

I thank my advisor, Dr. Lynn R. Ebbesen, who provided constant en

couragement throughout my graduate studies at Oklahoma State University

and many enjoyable and enlightening conversat,ions. I also thank the

other members of my advisory committee, Dr. Karl N. Reid, Dr. James H.

Taylor, Dr. Ronald P. Rhoten, and Dr. Larry D. Zirkle, as well as my many

col leagues for their help in the many aspects of my graduate studies.

Charlene Fries provided valuable assistance in the preparation of

the final manuscript for this thesis. Thank you~·

Finally, I thank my parents for their support and encouragement

throughout my entire education, and my wife Debbie for her patience and

kind understanding.

i i i

Chapter

I.

II .

TABLE OF CONTENTS

INTRODUCTION •

Scope and Objectives.
Plan of Presentation.

BACKGROUND .

Historical Developments .
Current Status. • . . •....

Page

3
4

5

5
7

I I I. THE CONTROL SYSTEM MODEL •• 12

Optimal Controller Design Problem.
The General Control System Model Representation

12
16

IV. DIGITAL COMP UT AT I ON AND RATIONAL. POLYNO·M I ALS 24

24
24
27
27
29
30
37
39

Exact Methods • • .
Rational Arithmetic •....
Alternative Number Systems •
REDUCE Programming System ..•..

Floating-Point Methods .•.•.
Direct Polynom-ial Representation.
Root Representation.

Summary . . • •

V. DIGITAL COMPUTER IMPLEMENTATION OF THE OPTIMAL CONTROLLER
DESIGN THEORY. . • • . . . • . . 41

Basic Operations. 41
Polynomial Ar1thmetic. 41
GCD Calculation. . . . 45
Rational Polynomial Matrix Arithmetic. • 47

Special Matrix Operations . • . . • • . • . . 48
Rational Polynomial Matrix lnv~rsion . • 48
Coprime Decomposition of Rational Polynomial

Matrices • • • . . . • 49
Matrix Spectral Factorization •.•. -. 53
Partial Fraction Expansion of Rational Polynomial

Matrices 57

v I. EXAMPLES . 60

iv

Chapter

Examp 1 e One . •
Example Two .
Example Three .

.VII. SUMMARY AND RECOMMENDATIONS ...

Summary • . . .
Contributions .
Recommendations

SELECTED BIBLIOGRAPHY •..

APPENDIX A - OPTIMAL CONTROLLER DESIGN THEORY

Definitions, Conditions, and Assumptions.
Definition 1
Lemma 1.
Lemma 2. • .
Lemma 3. .
Assumption l
Assumption 2 •
Assumption 3
Assumption 4 .
Assumption 5 .
Theorem l
Coro 11 a ry l . •
Coro 11 ary 2 . .
Corollary 3.

APPENDIX B - PROTOTYPE PROGRAM STRUCTURE ••

v

! • •

Page

61
66
87

95

95
96
97

98

103

103
103
104
104
104
105
105
105
106
106
107
108
109
109

110

.Table

I .

11.

111.

LIST OF TABLES

Controllers Computed for Example One ..

Definition of Functions for the Control Loop of Figure 4.

Definitions of Functions for the Plant of Figure 3

vi

Page

65

66

74

~-,

LIST OF FIGURES·

Figure ·Page

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

1 7.

Multivariable Control System Configuration 13

Example Illustrating the General Model Representation. 17

Example One Control Loop 62

Stabi 1 ization Loop for Example Two 67

Actual and Analytic PSD of Disturbance Entering the Rate
Stabilization Loop of Example Two. 69

PSD of the Rate Error of the Stabilization System. 69

Open Loop Response of the R~te Stabilization System. . 71

Closed-Loop Response of the Rate Stabi 1 ization System. • . 72

Block Diagram of the Plant Used for the Controller Synthesis
Process of Example Two • . • 73

Open Loop Response of Original Stabilization System With New
Controller fork= 1.0 . • • . 79

Closed Loop Response of Original Stabilization System With
New Cont ro 11 er for k = 1 . 0 . . . • •

PSD of Rate Error in Origina1 Stabilization System With New
Controller and k = 1.0 •...•.......•...•.

Open Loop Response of the Origin§l Stabilization System With
New Controller and k = l.Oxlo-. . •....•..•..

Closed Loop Response of_the Ori2bnal Stabilization System With
New Controller and k - 1.0xlO .•...•.......••

PSD of Rate Error in Origina~ Stabilization System With New
Controller and k = l.Oxlo-•......

Comparison of the Cumulative RMS Power in the Rate Error of
the Original Systems for Various Controllers ..

Open Loop Response of the Simpli$ied Stabilization System With
New Controller and k = 1.0xlO-•......

vii

80

81

83

84

85

86

88

Figure Page

18. Closed Loop Response of the :implifi:§ Stabilization System
With New Controller and k - 1.0xlO • • 89

19. Block Diagram of the Plant Used for the Controller Synthesis
Process of Example Three • 90

20 •. Data Flow Through the Controller Synthesis System 1 l 1

vi i i

A (s)
p

B (s)
p

C(s)

d(s)

· e (s)

NOMENCLATURE

Transfer function matrix used to specify plant in general model
representation

Vector used to specify plant input in general model representa
tion

- Transfer function matrix of optimal controller to be designed

- Vector representing pla~t disturbances

- Vector representing control system errors

- Mean-square value of sensitive plant input

- Mean-square value of control system errors

- Total sys~em performance measu~e, E=Et+kEs

F (s) - Transfer function matrix used to specify feedback sensor pre~
e equil ization

F (s)
0

Transfer function matrix used to specify feedback sensor noise
coup I ing

Ft(s) - Transfer function matrix used to specify feedback sensor
dynamics

Gd(s) - Matrix used to specify load disturbance spectral densities

G2 (s) - Matrix used to specify feedforward measurement noise spectral
densities

G (s)
m

Matrix used to specify feedback measurement noise spectral
densities

G (s) - Matrix used to specify reference input spectral densities
u

k - Performance measure input weighting constant

£(s) - Vector representing feedforward sensor noise input

L (s) - Transfer function matrix used to specify feedforward sensor
e pre-equalization

ix

L (s) - Transfer function matrix used to specify feedforward sensor
0 noise coupling

Lt(s) - Transfer function matrix used to specify feedforward sensor
dynamics

m(s) - Vector representing feedback measurements noise input

n(s) · - Vector representing system input noise

P(s)

Qt

r(s)

R (s)
p

S(s)

u(s)

- Transfer function matrix used to specify plant dynamics

- Performance measure error weighting matrix

- Vector representing command input to plant

Vector representing all plant output in general model
representation

- Sensitivity matrix, S(s)=(l+F(s)P(s)C(s)) - l

- Vector representing filtered system reference input

u. (s) - Vector representing ideal system reference input
I

v(s) - Vector representi~g plant feedback measurements available to
controller

W(s) - Transfer function matrix used to specify input pre-filtering

y(s) - Vector representing the plant outputs to be controlled

z(s) - Vector representing plant feedforward disturbance measurements
available to controller

x

CHAPTER I

INTRODUCTION

Since the early 1960 1 s when Kalman [l] introduced state-space meth

ods into optimal control theory, most of the advancements in control

system synthesis have utilized the time-domain techniques. The current

popularity of the state-space design and analysis theory is evident from

the vast amount of 1 iterature which has been published. The -so-called

Linear-Quadratic-Gaussian (LQG) theory [2] is the cornerstone for a

large class of significant developments.

Although LQG and related time-domain synthe~is techniques still

dominate the I iterature, many control engineers prefer frequency-domain

design methods. Results are usually easier to interpret and compare in

the frequency-domain and engineering design specifications are simpler

and more practical. Because of its continued use in practice, frequen

cy-domain synthesis theory is beginning to reappear in the literature

and recently has been gaining more attention.

A variety of frequency-domain design methods exists such as trial

and error, pol~ shifting (modal), and optimal multivariable techniques.

Of these techniques, the optimal methods are the only true synthesis

methods relying mostly on mathematics to provide suitable controllers

while the other types require a fair amount of design experience to

arrive at satisfactory results. Optimal design techniques are used to

find controllers which optimize some predetermined measure of overall

system performance. Performance measures for frequency-domain design

methods usually consist of minimization of the mean square steady-state

error between system input and output.

Optimal design methods in the frequency-domain parallel the LQG

techniques in the time domain; however, the frequency-domain theory of

fers several advantages. Among these advantages the major ones are:

2

1. Plants do not require state-space representations, only rational

transfer functions are needed.

2. Dynamical sensors can easily be incorporated into the design.

3. Colored noise does not have to be treated as a special case.

4. Simpler controllers can often be found.

Frequency-domain methods have some drawbacks which may make the

theory difficult to utilize. One drawback is the need for accurate

plant models including good rational transfer function approximations

for details such as process lays. Load disturbances and measurement

noise must be representable by rational spectral density functions, and

these are not always available or easily obtainable. These problems are

present in most optimal design procedures although they can often be

circumvented such that val id results can be obtained.

The most serious obstacles to the successful application of fre

quency-domain multivariable controller design are the r~quired algebraic

computations. These computations include spectral factorization, inver

sion, canonical decomposition, and partial fraction expansion of ration

al polynomial matrices. Additionally, the basic polynomial operations

of addition, subtraction, multiplication, division, and the calculation

of the greatest common divisor between two or more polynomials have in

herent numerical problems which add to the difficulties of the over-all

j

3

computation. These computations are difficult to perform manually even

for the design of simple systems and are virtually impossible to do man

ually for more complex multivariable designs.

The digital computer offers a viable tool to aid in the computation

of optima1 controllers~ Once a computer program has been developed which

is capable of performing the entire computation there should be a size

able increase in the amount and types of application of the optimal the

ory. The intent of this research was to study the development of such a

program.

Scope and Objectives

The scope and objectives of this study are summarized as follows:

1. Pick from the available optimal frequency-domain theory the one

method which would yield the most benefit once implemented in a computer

program.

2. Develop a generalized method for the representation of the

plant model and the introduction of its associated transfer function

matrices into the design process.

3. Investigate the various methods which could be used to repre

sent polynomials in a computer program. Investigate the numerical prob

lems associated with each method of representation. Select the method

which will function best in the overall design program in terms of nu

merical accuracy.

4. Develop a general prototype computer program which will compute

the optimal controller based on the theory selected under the first ob

jective. The resulting program should be general enough to allow testing

of various basic algorithms and accommodate a moderate range of multi

variable systems.

5. Demonstrate the program with an example. Compare the perfor

mance of the resulting controller with that of controllers that already

exist. Use computer simulations of the system response for the compar

ison.

Plan of Presentation

Chapter I I provides background information rel~ted to this study.

4

Major historlcal developments related to optimal frequency-domain con

trol]er design are presented in the chapter as well as a review of cur

rent 1 iterature related to theory and algorithmic procedures. The first

section of Chapter I I I describes the design theory which was implemented

in the program with Appendix A providing the remaining details. The

last section of Chapter I I I describes the generalized model representa

tion theory developed by this study.

During the course of this research, three major algorithmic tech

niques were considered for use in the controller design program. Chap

ter IV sum~arizes the advantages and disadvantages of each method.

Chapter V presents the algorithmic technique finally chosen and outlines

the manner in which various operations, such as partial fraction expan

sion and polynomial matrix inversion are computed in the prototype pro

gram. Appendix B describes the mechanical structure of the program. An

example illustrating the design process and use of the program is pre

sented in Chapter VI and the conclusions and recommendations for future

study are given in Chapter VI I.

CHAPTER I I

BACKGROUND

Historical Developments

The major impetus to optimal frequency-domain control theory seems

to have arisen out of Wiener's famous work in filtering and prediction

[3]. In this work, Wiener demonstrated the solution of the Wiener-Hopf

integral equation which results from the minimization of the mean-square

error between the actual output of a filter and the desired or ideal out

put. By working in the frequency-domain and using a technique known as

spectral factorization, he was able to solve the equation and obtain the

realizable filter transfer function directly.

Later, Newton, Kaiser, and Gould [4] published a text demonstrating

how mean-square error minimization and the Wiener-Hopf solution could be

used to obtain optimal compensators for single-input, single-output feed

back systems. The text appears to be the first publication to thoroughly

discuss the optimal design of control systems in the frequency domain,

addressing such problems as sensor dynamics, process and measurement

noise, and plant saturation. Their methodology suffered from a major

drawback that only open-loop stable, single-input, single-output plants

could be accommodated. Their work considered the solution of the fixed

configuration, semi-free-configuration, free-configuration Wiener prob

lems.

A number of related papers were later published which extended the

5

6

work of Newton et al. [4]. Amara [5] solved the multivariable free-

configuration Wiener problem and demonstrated the use of matrix spectral

factorization. Hsieh and Leondes [6] first developed a solution for the

semi-free-configuration Wiener problem which required solving a set of

iimultaneous algebraic equations avoiding the need to perform spectral

factorization. However, they did not prove that a solution to their

equations existed and it was later shown by Davis [7] that their method

failed in some cases. Bongiorno [8] also solved the semi-free-configu-

ration problem attempted by Hsieh and Leondes using matrix spectral

factorization.

All of the previous design methods were unable to accommodate un-

stable plants and required the plant or process being controlled to be

open-loop stable from the start. Concurrently, several researchers were

investigating the questions of stability and physical realizability

associated with the synthesis of m~ltivariable feedback control systems

[9, 10, ll, 12]. Right-half plane pole-zero cancellations within a feed.;.

back loop were considered first by Ragazzini and Franklin [13] in their

early work with sampled data systems. An analogous treatment for con-

tinuous-time systems was presented by Bigelow [14]. Even with these

investigations, it was still some time later before the questions of

stability were fully understood and the restrictions removed from fre-

quency-domain synthesis methods.

The next largest advance in the theory appears to have occurred

with the study of Weston and Bongiorno [15] who extended the work of

Newton et al. [4] to the multivariable system. Their investigation

determined the manner in which load disturbance, measurement noise, and

plant saturation effects could be incorporated into multivariable

7

design processes. The plant matrix could be rectangular but was subject

to the condition that the number of plant output did not exceed the

number of input. The method also required that the plant be open-loop

stable.

Several other contfibutlons to the frequency-domarn optimal.control

theory exist and have been published in various journals [16, 17] and

texts [18, 19, 20]. However, these developments have been overshadowed

by more recent ones. Various investigations into other methods which

are not strictly optimal have also been reported. Examples include the

inverse Nyquist array method of Rosenbrock [21] and the characteristic

loci methods of Belletrutti and MacFarlane [22, 23]. Others include the

pole shifting or modal techniques [24]. The use of these types of meth-

ads usually require a greater amount of design experience and are often

'

incorporated into interactive type computer de~ign programs [25].

Two complete surveys have been published briefly describing the

various optimal and nonoptimal design techniques which have been inves-

tigated and reported over the previous years [26, 27].

Current Status

A significant result in optimal frequency-domain synthesis theory

has recently been published by Youla, Bongiorno, and Jabr [28, 29].

This work has contributed greatly to the overall optimal frequency-domain

design theory and appears to be the most comprehensive frequency-domain

synthesis technique to date. The questions of stability have been an-

swered as well as other engineering considerations such as steady-state

error and sensitlvity. The method is general enough to accommodate

open-loop unstable and/or ~on-minimum ph~se plants with no restrictions

8

on the number of input and output. Both colored and white noise can

be accommodated as well as plant saturation effects. The method applies

to both single-input, single-output,and multivariable plants.

The duality between the time-domain and frequency-domain methods

for the solution of ~tochastic, multivariable, optimal control problems

has been demonstrated by MacFarlane [30], Barrett [31], and Shaked [32].

Youla et al. [29] also showed the duality between their methods and

time-domain methods. They further demonstrated the manner in which

simpler, suboptimal controllers could be found by their method and not

by the time-domain methods.

Optimal frequency-domain synthesis requires factorization and man

ipulation of polynomial matrices which present formidable computational

difficulties. For these reasons, implementation of the methods requires

the use of automatic computers to carry out the calculations, even if

the order of the plant is relatively low. Any simplifications of the

design techniques can be useful in reducing the computational burden.

A few recent studies have been made which consider simplifications

to the methods of Youla et al. [29]. Grimble [33] describes a method

which he reports to be easier to implement than that of Youla et al.

[29]. The advantages seem to be cancelled by the fact that his method

requires calculating three separate controllers, two of which are open

loop and are not quite satisfactory in terms of sensitivity. His work,

however, answers some important questions about inputs consisting of

both deterministic and stochastic components. Another work by Bongiorno

[34] demonstrates how the theory in reference [29] can be used in part

to obtain satisfactory controllers, but the method described is not op

timal and requires intuition on the part of the user.

9

Studies related to the computational aspects of and the numerical

problems associated with a complete optimal controller synthesis pro

gram do not exist. However, some results have been published describing

algorithms for computing various parts comprising the overall problem.

In part, the object of this research was to explore the problems which

arise when the various computational parts are combined into one com

plete procedure.

Most of the studies in the 1 iterature related to computations in

volving rational polynomials and rational polynomial matrices fall into

one of two general categories. The first category is comprised of exact

computation methods. These methods assume the coefficients of the poly

nomials can be represented as exact rational fractions with the solution

represented likewise. The second category consists of the methods which

utilize the more usual floating-point arithmetic.

Unique to the exact methods is a special purpose programming lan

guage known as REDUCE 2 [35]. REDUCE is a very powerf~l symbolic manip

ulator whose primary function is the algebraic manipulation of tational

polynomials. The main disadvantage of this programming system is its

inability to factor polynomials or perform division of polynomials, two

necessary computations required for spectral factorization, co-prime de

composition, and partial fraction ~xpansion of rational polynomiaj ma

trices. The use of REDUCE 2 is considered in Chapter IV.

Basic principles of exact polynomial arithmetic are summarized in

two. texts [36, 37]. Recent contributions are directed toward more spe

cific algorithms, such as those of McClellan [38], Horowitz and Sahni

[39], and Gentleman and Johnson [40], all of which are concerned with

the computation of the determinant of polynomial matrices. These

10

algorithms require the coefficients of polynomials to be represented as

rational integer fractions. Operations are then performed using both

the numerator and denominator of each coefficient. During the course

of the operations, the numerator-denominator pair must be constantly

reduced to its lowest prime form to prevent excessive coefficient

growth. Coefficient growth, also known as "intermediate expression

swell" [38], is the greatest difficulty in the use of exact computa

tion methods.

The use of alternative number systems for exact computations has

also been investigated by a few authors. Knuth [37] presents a com

plete treatment of modular or residue arithmetic. Addition, subtrac

tion, and multiplication are easily performed using residue arithmetic;

however, division cannot be performed in any similar manner.

Rao [41] has proposed the use of finite field transforms using a

p-adic number system. His approach to exact arithmetic combines the

best features of the usual p-ary number system and residue arithmetic.

Some additional work has been done using this type of arithmetic which

is directly related to the computation of optimal controllers [42, 43].

Again, these methods seem hampered by the coefficient growth problem

mentioned above and, for purposes of this study, by lack of an ex

plicit spectral factorization algorithm.

Many algorithms dealing with rational polynomial matrices and

using floating-point arithmetic have been pub! ished. Matrix spectral

factorization, a critical step in the optimal controller synthesis pro

cess, was first developed into a numerical algorithm by Youla [44].

Later, Tuel [45], devised an algorithm for spectral factorization based

on an iterative procedure used to solve a set of equations similar to

I I

steady-state matrix Riccati equations. Anderson, Hitz, and Diem [46]

also devised a recursive technique that is similar to Tuel 1 s algorithm.

Davis [47] and Grimble [48] have reported spectral factorization algo

rithms whi.ch are of a non-recursive nature; however, Tuel 1 s algo.rithm

remains the most popular.

The inversion of rational polynomial matrices, also a key step in

controller synthesis, has been addressed by Downs [49], and Mu~ko and

Zakian [50]. The decomposition of polynomial matrices to Smith form is

discussed by Pace and Barnett [51, 52]. More basic algorithms pertain

ing to polynomial arithmetic are also available [37, 53, 54].

The calculation of the greatest common divisor between two polynom

ials is an extremely important calculation in the controller synthesis

theory, and efficient algorithms are mandatory. There exist ample stud

ies related to the greatest common divisor problem [55, 56]. However,

the lack of adequate error analysis, and information pertaining to the

range of problems which can be successfully handled by the algorithms

makes the validity and usefulness of the procedures questionable. In

fact, most of the algorithms which utilize floating-point arithmetic

were demonstrated with rather trivial examples and lacked adequate er

ror analysis and range of problem information. As a result some of

these algorithms, when implemented as presented in the literature, are

not usable in the overall controller synthesis design program.

CHAPTER 111

THE CONTROL SYSTEM MODEL

Optimal Controller Design Problem

The multivariable controller synthesis theory of Youla, Bongiorno,

and Jabr [29] was selected for use in this study. The theory is general

enough to accommodate a large class of both single-input single-output

and multivariable design problems. Additionally, the computations requir-

ed by the various steps of this design process are representative of those

required by most of the optimal frequency-domain synthesis theory in exis-

tence. By implementing the selected theory in a digital computer program

a general problem has been considered. Later development of programs for

less complex theories (or suboptimal theories) should present few problems.

The remainder of this section outlines the control system model on

which this study was based. The theoretical details of the actual synthe-

sis procedure are provided in Appendix A.

The following notation will be used in the remainder of this thesis.

The transpose, inverse, trace, and determinate of a matrix A will be de-

T -1
noted by A , A , TrA, det A, respectively. I represents the n x n i den

n

tity matrix and 0 represents then xm zero matrix. nm

The control system configuration considered by Youla, Bongiorno, and

Jabr [29] and in this research is shown in Figure 1. In the figure, P(s)

is an n xm matrix of rational transfer functions representing the system

plant. F{s). is an n xn matrix containing the feedback sensor dynamics.

12

ff'....r.',,.,,. .. ~

r- - - - - - - - - - - - - - - - - - - -1
I I
I I

: FEEDFORWARO :
1 SENSOR

d{S)

I {S)
: Le(S) Lt(S) :
I I
I L I
I (S) . I L __________________ J

n{S) lz(S} I Po(S)

Uj(S) A I
W(s)

CONTROLLER ~ PLANT

C::(s) F>(s)
I +X _ y(S)

U(S)
V(S)

,---- --- --- --- -- - - -- ----T
: I
I I
I FEEDBACK I
I SENSOR ..--;'------'

Fees) Res} ·

m{S) L I +
1-o(S}

F(s)
~---------------------~

Figure 1. Multivariable Control System Configuration

""'

~

14

L(s) is optional and represents disturbancci feedforward sensor dynamics.

Matrix C(s) is the mxn controller to be determined.

Plant disturbance and measurement noise are include~ by assuming

that

y(s) P(s) r(s) + p (s)
0

d(s) (3. 1)

v(s) = F(s) Y (s) + F (s) m(s) (3.2)
. 0

z(s) = L(s) d (s) + L (s) Q, (s) (3,3)
0

where P {s), F(s), F (s), L(s), and L (s) are also real rational matrices
0 0 0

and are of compatible dimension~

In some control system designs, feedback alone will not suffice in

the suppression of load disturbance and feedforward is advisable. This

feedforward is accomplished by measuring the disturbance via the sensor

matrix Lt(s). In many practical problems the choices of physical sensing

devices Lt(s) and Ft(s) is restricted and dictated by the problem. Low

power pre-equalizers L (s) and F (s) can and in many cases should be used e e

to improve stability margin, to assure zero steady-state error, and to in-

corporate delay in the feedback path [29].

and

It is assumed P(s), P0 (s), Lt(s), L (s), F (s), F (s) are known;
0 t 0

F(s) = F (s) F (s)
e t

L(s) = L (s) L (t).
e t

(3.4)

(3. 5)

Additionally, the spectral densities of u(s), d(s), t(s), and m(s) must

be specified and are denoted by Gu(s), Gd(s), GQ, (s), and Gm(s), respec

tively.

If yd(s) is the desired closed-loop response, it can be related to

'"

the actual set point input signal u.(s) by
I

15

where Td(s) is an ideal transfer matrix. If Td(s) is embedded within the

prefilter matrix ~(s) and W(s) is selected in advance, then

u(s) = W(s) (u.(s) + n(s))
I

(3. 7)

is the best available approximation of yd(s). The performance measure is

based on the vector error

e(s) = u(s) - y(s) (3.8)

where y(s) is the actual plant output.

The performance criteria is given as

1 Ijoo T
Et= 2n. Tr . < e(s) Qte (-s) > ds

J - J""
(3. 9)

where Qt is a non-negative definite weighting matrix and <•> denotes en-

semble average. Similarly, if P (s) represents the transfer matrix coup
s

ling the plant input, r(s), to the plant states which must be protected

against saturation effects, then

1 Ijoo T T
E =-2 . Tr <P (s) r(s) r (-s) P (-s)>ds
s J . s s

- J"'
(3.10)

is a proven penalty function [4]. Hence, the total cost can be formu-

lated as

E = E + kE
t s (3.11)

where k is a positive adjustable constant used to trade off linear perfor-

mance with system accuracy [29].

16

The General Control System Model Representation

As mentioned in the previous section, a user must supply the plant

matrix, P(s), the feedback matrix, F(s), the feedforward matrix, L(s),

and the additional transfer function matrices, P (s), F (s), L (s), and
. . 0 0 0

P (s) before the synthesis process begins. However, in larger multivari
s

tj able plants which have a high degree of interconnection and several inner

control loops the required transfer function matrices may not easily be

determined. In this section a generalized method for representing the

plant model, which can be used by a computer program to automatically de-

termine the necessary transfer function matrices, is outlined.

The procedure is best explained with an example. Figure 2 is the

block diagram of a plant and measurement system for which a controller is

to be designed. The blocks labeled Gl, G2, etc. represent various known

transfer functions within the plant. Blocks Fl, F2, etc. represent sen-

sor transfer functions and all blocks are assumed rational in the Laplace

variable s.

The plant input is indicated by r 1 and r2 , disturbance input by d1

and d2 , and measurement noise input by n1, n2 , and n3. Selected plant in

put and riutput are represe~ted as elements of the vector R . With these
p

definitions, the following equation set may be written:

R (1) = Gl r 1 + dl - Rp(2) (3. l 2a)
p

R (2) = G2 R (1) (3. 12b) p p

R (3) p G3 R (2) p (3. 12c)

R (4) = Fl R (2) + nl (3.12d) p p

R (5) = F2 R (7) + n2 (3. 12e) p p

R (6) = G4 r2 + d2 (3. 12f) p

_.,,. ~··

d1

r1 GI + ~ Rp(I) G2 Rp(2) G3 Rp(3)

1
Rp(4) + Fl

+ n1

Rp(5)
n2

~ Rp(S) + F2 + ~
+

r2 G4 + Rp(6) G5
Rp(7)

+
d2

Rp(9) + F3
+

n3

Figure 2. Example Illustrating the General Model Representation

-......1

18

R (7) = G5 R (6) (3.12g)
p p • R (8) R (3) + R (7) (3.12h) =
p p p

R (9)
p F3 Rp(8) + n 3 . (3. 12 i)

This equation set represents a set of simultan~ous equation~ which after

rearranging can be written -in matrix form as

' A (s)
p

R (s)
p

= B (s)
p

(3.13)

with the matrix A (s) defined as
p

0 0 0 0 0 0 0

-G2 0 0 0 0 0 0 0

0 -G3 0 0 0 0 0 0

0 -Fl 0 0 0 0 0 0

A (s) = 0 0 0 0 0 -F2 0 0 (3. 14)
p

0 0 0 0 0 0 0 0

0 0 0 0 0 -G5 0 0

0 0 -1 0 0 0 -1 0

0 0 0 0 0 0 0 -F3

and

i.\
~t Gl rl + di

0

0

n 1
B (s)

p n2 (3. 15)

G4 r2 + d2

0

0

n3

~.

'

i

19

Equation (3. 13) describes the plant and feedback measurement system

completely. It should be noted here that the elements of A (s) and B (s) p . p

are rational transfer functions.

is -1 For this example the The next step to determine A (s) . inverse
p

is computed as

1
G2+1 G2+1 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 G2+1 G2+1

G3G2 G3
0 0 0 0 0 0 G2+1 G2+1

FlG2 Fl
0 0 0 0 0 0

-1 G2+1 (G2+1)
A (s) = p

0 0 0 0 G5F2 F2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 G5 0 0

G3G2 G3 0 0 G5 0 G2+1 G2+1

F3G3G2 F3G3 F3 0 0 F3G5 F3 F3 G2+1 G2+1

(3.16)

To determine the plant matrix P(s), it is first necessary to desig-

nate the input to be used and the output to be controlled. For now, let

the plant input be r 1 and r2 and the output to be controlled be Rp(8).

Setting r 1 equal to one and the remaining input (r2 , d1, d2 , n1, n2 , and

n3) to zero, the Bp(s) vector becomes

20

(3.17)

(3. 18)

the transfer functions from the input r 1 to each of the plant output can

be obtained. It is not necessary to find the entire R (s) vector since
p

only R (8) is desired. Therefore, multiplying the eighth row of A-l (s)
p p

by the 8 1 (s) vector, the l x2 plant matrix with only the first element
p

determined is

P(s) = [GlG3G2
G3+1 . . . J . (3.19)

Now by setting r 2 to one and r 1 and the other input to zero and repeat

ing the above process,element r 12 (s) of the plant matrix is obtained re

sulting in

P(s) = [GlG3G2
G2+1 G4G5] . (3.20)

In a similar manner of setting each of the various input, distur-

bances, and noises in turn to one and using the appropriate elements of

R (s), the matrices P (s), F (s), F(s) P(s), F(s) P (s), P (s), L(s) and
p 0 0 0 s

L (s) can be obtained. Notice that the F(s) matrix cannot be obtained
0

directly by this representation. This is not of concern since only the

21

products F(s) P(s) and F(s) P (s) are actually needed in the synthesis
0

calculation.

Several comments are in order at this point. First, the procedure

requires the inversion of the rational polynomial matrix, A (s). While
p

this may seem somewhat complicated, it should be noted that the matrix

is generally sparse and there exists a few efficient methods for perform-

ing this inversion (for example, REDUCE 2 [35]). Also, by careful selec-

tion of the output and input, a number of different plant input-output

configurations can be utilized by the controller design program with a

single inversion of A (s). Considering Figure 2 again, it may be desired
p

to design a controller for the single-loop plant which has r 1 as its in-

put and R (2) as its output. Using the procedure outlined previously and
p

the same A-l (s) matrix, the plant is easily obtained as
p

P(s) = [G 1 G2]
G2+1 • (3.21)

Once implemented in an efficient computer program, this generalized model

representation allows many designs to be investigated with minimal user

effort.

A second comment is that methods similar to this have been used in

other frequency domain control system analysis programs [57, 58]; how-

ever, its use in a synthesis program as described herein is new. If only

a state-space representation of the plant is available, it can easily be

related to the transfer function form of Figure 2 [59). In fact, if a

state-space representation of the plant is available, then a very general

A-l (s) matrix is obtained, making it possible to consider all plant input
p

output configurations.

22

To illustrate the state-space approach, consider the familiar time-

invariant state-space equation set:

~(t) = A x(t) + B u(t) + D w(t) s s s (3. 22)

y(t) = C x(t) + E z(t) s s . (3.23)

where x(t) is the state vector, u(t) is the input vector, y(t) is the

output vector, w(t) is the disturbance vector, and z(t) is the measure-

ment noise vector. After taking the Laplace transform of Equations

(3.22) and (3.23), they can be written as

- l x(s)=(sl-A) (Bu(s)+Dw(s)) s s s

and

y(s) = C(sl - A)-l (B u(s) + D w(s)) + E z(s). s s s s

These equations can now be related to Equation (3.13) by letting

and

R (s) = y(s)
p

A (s) = (sl - A)
p s

B (s) = (B u(s) + D w(s)).
p s s

j The remaining calculations are then based on the equation

R (s) =CA (s)-1 B (s) + E z(s) p p p s

(3. 24)

. (3.25)

(3.26)

(3.27)

(3.28)

(3. 29)

and the necessary transfer functions are obtained by alternatively set-

ting the various input, disturbances, and noises to one and performing

the multiplications and additions as before. The only difference is the

presence of the additional vector, E z(s), representing the measurement s

noise process.

23

As a final comment, the example of Figure 2 is trivial in that the

required transfer functions can easily be computed manually. Chapter VI

contains a more comp! icated example and demonstrates the effectiveness

of this model representation theory. Although no examples are provided

showing the use of a disturbance feedforward system, its inclusion in

the model representation is straightforward.

CHAPTER IV

DIGITAL COMPUTATION AND RATIONAL POLYNOMIALS

During the course of this research, two different schemes for repre-

senting rational polynomial matrices and for performing the related arith-

metic within a computer program were investigated. These investigations

were carried out with the knowledge that the results would subsequently

be applied in the development of a computer program for controller syn-

thesis. Since the synthesis program implements the design theory described

in Appendix B, the resulting scheme had to accommodate an algorithm for

matrix spectral factorization, canonical decomposition of polynomial ma-

trices, and partial fraction expansion of rational polynomials.

The schemes investigated are classified as the exact method and the

floating-point method. The remainder of this chapter describes each of

the methods separately along with their advantages and disadvantages.

The final section of this chapter compares each of the methods, and shows

which method was chosen as the best for the overall synthesis program.

Appendix B defines the logical structure of the prototype program devel-

oped by this study. The program allowed each of the various representa-

tion and arithmetic schemes presented here to be easily tested within the

general framework of the overal 1 synthesis program.

Exact Methods

Rational Arithmetic

The use of rational arithmetic provides a means of performing exact

24

25

computations within a digital computer program. The basic concepts are

well known and can be found in many texts (see References [36] and [37]).

Rational arithmetic as applied to polynomials requires that each of

the coefficients of the polynomial be represented as a rational fraction.

Consider a general nth-order polynomial

p(s) (4. l)

To use rational arithmetic each coefficient must be represented as

q.
I O,l,2,3, ... ,n (4. 2) a. =

I r.
I

where each q. and r. is an integer.
I I

Rational fraction representation requires two integer numbers be

stored in a computer program for each coefficient of each polynomial.

The number of digits in each of these integer numbers will easily Bxceed

·the normal integer wordsize of current computers. For example, an IBM/

370 can, in a single integer word, accurately represent at most nine

digits. The use of only nine digit integers by the synthesis program

would allow only the most trivial of problems to be solved. To illus-

trate, consider a 7th order polynomial whose roots are of magnitude

greater than 100. The low order coefficient of the polynomial has a mag

nitude of approximately 1007 and requires at least 15 digits to represent

it accurately.

The wordsize limitation can be overcome by using several computer

words to represent a single integer number. The arithmetic must then be

performed by software since the normal machine arithmetic on most com-

puters operates only the prescribed machine wordsize.

Polynomial arithmetic is done in the usual manner except addition,

26

subtraction, multiplication, and division of individual coefficients

must take into account their fractional representation. The addition of

two coefficients represented as in Equation (4.2) actually requires three

multiplies, an addition, and a reduction of the resulting fraction tb its

lowest form. Reduction of a rational fraction to its lowest form means

dividing out of the numerator and denominator, their greatest common

divisor (GCD). This prevents the number of digits in the coefficients

from becoming larger than necessary. Multiplication, division, and sub-

traction of coefficients are performed in a similar way.

Rational arithmetic is highly desirable for use in the controller

synthesis program, only for the reason that exact computation is possi-

ble. The exactness of the various computations comprising the synthesis

procedure directly determines its success. There is, however, one im-

portant drawback to the use of rational arithmetic known as intermediate

coefficient swell. When rational arithmetic was implemented to perforw.

the inversion of the example system matrix (A (s)} of Chapter VI, the
p

number of digits required to represent some intermediate coefficients

grew to over 70. Coefficient growth results in greatly increased com-

puter computation times and uses large amounts of memory.

A more subtle illustration of coefficient growth is provided by the

spectral factorization of a polynomial. Consider the polynomial

p(s) = 2 - s2 (4.3)

which has /2+s and 12-s as its spectral factors. Any attempt to do the

factorization of Equation (4.3} using rational arithmetic and any conven-

tional factorization algorithm (for example, see Tuel [45]) will fail

due to the irrational coefficient 12. The number of digits required to

represent the irrational coefficient is infinite.

27

Alternative Number Systems

The use of alternative number systems has been proposed recently as

a means of implementing exact arithmetic within a computer program. Two

methods were investigated for use in the synthesis program. The first

method was the use of a residue number system [37] and the second was the

use of a finite segment p-adic number system [41].

The use of either of these methods requires the polynomials to be

representable as in Equation (4. 1) with rational fraction coefficients.

The main advantage of using one of these number system is that computer

memory requirements are reduced. Basic operations, addition, subtraction,

multiplication, and division, however, must be done by software which in-

creases the execution time of the program.

Unfortunately, the same problems which hinder the rational arithme-

tic described earlier, specifically coefficient growth during spectral

factorization, are not eliminated by the use of these alternative number

systems. In fact, additional problems are introduced, especially by the

use of the p-adic representation. These additional problems lie in the

conversion of numbers from their alternate representation back to a read-

able decimal representation. The conversion process is very time consum-

ing, and the need for the synthesis program to output various intermedi-

ate data requires many repeated conversions.

REDUCE Programming System

REDUCE [35] offers a very powerful means with which to manipulate

rational polynomials and rational polynomial matrices. It can perform

symbolic calculations as well as exact numerical computation. REDUCE

uses a high-level language similar to Pascal which makes programming

28

relatively easy. The ability to perform symbolic calculations is the

greatest asset of REDUCE; however, computer execution is slow and large

amounts of memory are required. Also, REDUCE is not available on many

computer systems, and its implementation on some systems, such as the

IBM 360 and 370 computers, is incomplete.

Since REDUCE uses, basically, the same rational arithmetic described

earlier to do exact numerical calculations, it suffers from the same co-

efficient growth problem. This problem is easily avoided by the use of

symbols for the polynomial coefficients. REDUCE may then perform a de-

sired series of calculations and return the answer in terms of the orig-

inal symbols. To obtain actual numerical values for a solution, REDUCE

can be made to write its answer in the form of a FORTRAN subprogram which,

when supplied with the numerical values for the original symbols, cah be

called to calculate numerical values for the solutions.

REDUCE is well suited as a preprocessor type system for the control-

ler synthesis program. It can be used to solve the generalized model

representation Equation (3.13) symbolically and write a FORTRAN subrou-

tine which is called by the synthesis program to obtain the various trans-

fer function matrices required (i.e., P{s), P (s), etc.). A REDUCE pro
o

gram was set up to do this for the pointing and tracking system example

of Chapter VI (see Figure 9) and it proved to work very well. Total exe-

cution time was approximately two minutes on an IBM 370/168; however,

since the program must only be executed once for a particular plant, the

execution time may be acceptable.

The use of REDUCE to do the entire controller synthesis computation

was also investigated. The major difficulties encountered were the lack

of algorithms to do the spectral factorization, partial fraction

------ -

29

expansion, and the coprime decompositions of Equation (A~3). The devel-

opment of these algorithms will require the addition of some basic capa-

bilities to REDUCE such as polynomial synthetic division and polynomial

factoring. If such capabilities become available for REDUCE and suitable

algorithms develop, it may be possible for REDUCE to solve the entire

controller design problem symbolically, giving the resulting controller

1 in terms of the original plant symbols. This would be a very ideal solu

tion due to the fact that when any plant parameter's value is changed,

the controller is immediately known. Also, if the various weightings of

the design process were symbolic, the controller would also contain these

symbols and trade-off studies for various weighting values could be done

very easily.

A 1 though REDUCE is very powerful, its use for the contra l ler syn the-

sis process is, at present, limited to the role of a preprocessor for

plant determination. As its capabilities are expanded and it becomes

more machine portable, it most likely wi 11 become a major tool for fre-

quency-domain controller design.

Floating-Point Methods

The use of finite precision floating-point or real arithmetic is

;1 most advantageous from the standpoint of availability of algorithms such

as the spectral factorization algorithm of Tuel [45). Real arithmetic

methods are also relatively easy to implement in computer programs with

well-known languages like FORTRAN. However, computations involving poly-

nomials with real coefficients suffer a multitude of numerical problems.

The numerical problems became evident when direct implementation of

floating-point arithmetic was attempted in the controller synthesis

30

program. Numerical inaccuracies in the results of one computation were

propagated and amplified by subsequent computations. The numerical

errors would eventually become so large that further computation became

impossible and the program would terminate before any solution was found.

In the remainder of this section, the use of floating-point arith-

metic for polynomial operations is discussed. Some problems are identi-
~;
t' f fied and means to overcome the problems are outlined.
'

Direct Polynomial Representation

Direct polynom1al representation means polynomials are represented

in a computer program by storing the n+l coefficients of an n-order

polynomial as an ordered set of real numbers. Later in this section an

alternative representation is discussed in which the roots of polynomi-

als are stored along with a gain value.

In order to analyze the numerical problems associated with f]oating-

point polynomial computations, it is first necessary to examine the nature

of the rational polynomials which arise from 1 inear systems. A rational

transfer function is represented by

m
1t (~ + 1)
i = l a.

K
I (4.4)

f g n
1t (~ + l)
j=l s.

J

where K is a constant gain and a. and S. represent the zeros and poles
g I J

of the system. The a. and S. can be real or complex and if complex they
I J

occur as conjugate pairs.

Both the numerator and denominator, written as polynomials, become

31

2 3 m a + a 1s + a2s + a 3s +. . + a s
0 m

b + b1s + b2s b s 3 b s
n + +. •• + ·o 3 n

(4.5)

where

a == K
0 g

(4.6a)

m
~ al K L: • g

.Q,= l a.Q,
(4.6b)

m-1 m
a2 K L: I: -g .Q,=] k=t+l at~

(4.6c)

m-2 m=l m

a3 = K 2: I: L: g JI,=] k=JI,+] j=k+l aJl,akaj
(4.6d)

m-m+l m-m+2 m-m+3 m
a = I: I: 2: L: n a,Q,aka j a. JI,=] k=JI,+] j=k+l i=m I

(4.6e)

and the b o' bl ' b2 . b are defined similarly without the K term. If n g

la. I > 1
I

for i=l,2,3, •.. ,m (4. 7)

then the magnitude of coefficient a can be large compared to coefficient
0

a . Consider, for example, the poles S. each having magnitudes of the
m J

order of 103 (which is not unreasonable for a very large class of linear

systems). The magnitude of the low-order coefficient of the denominator

I is 1 while the magnitude of the high~order coefficient is l0-3n. As the

order of the polynomial increases, the difference in magnitude between

the high-order and low-order coefficient increases. Normalization of the

rational polynomial of Equation (4.5) using the high-order coefficient of

either the numerator or denominator will not reduce this difference. This

large magnitude difference is one of the major difficulties in the use of

finite-precision, floating-point arithmetic.

fj
"

32

A second major difficulty arises from the finite-precision which com-

puters use for floating-point computation. Precision affects two impor-

tant polynomial calculations directly, synthetic division and the calcula-

tion of the GCD between two polynomials. To illustrate this effect,

consider the low-order coefficient a from the polynomial
. . 0

n
p 1 (s) = 1\ (s + a.)

i = 1
I

(4.8)

which is defined as

(4.9)

Assume, for simplicity, that each a. is real and is accurate to two
I

significant digits and that the precision of the machine arithmetic is

assumed to be four significant digits. Calculation of the a coefficient
0

is done by successive multiplications with the results of each multipl ica-

tion being chopped to four digits. (Chopping is the worst case applicable

to finite-precision arithmetic. This is the technique used in a majority

of computers, although some employ a rounding scheme [60].) If no noise

is introduced by the multiply, the first product a. 1a.2 will have no error.

The second product a. 1a. 2a. 3 will be chopped to four digits; hence, the re

sult of the finite-precision multiply becomes

(4. 10)

where s 2 is the error introduced into the result by chopping. Proceeding

with the remaining products the final product becomes

(4.11)

and the total error in pn is

33

(4.12)

The remaining coefficients of the polynomial in Equation (4.8) involve

the sums of products, and in addition to chopping error introduced by

multiplication, additional error is added due to the addition process.

Error due to chopping is introduced into the coefficients of the·

polynomials as they are computed using Equation (4.6). For some applica-

tions, this error may not represent a problem. However, for optimal con-

troller synthesis it Is a very significant problem, since the success of

the computations depends on the ability of arithmetic to factor a high-

order polynomial into its lower order factors.

Returning now to the polynomial formed from Equation (4.8), suppose

that it is desired to divide out the polynomial

leaving

n-1
= 1f

i=l
(s +a.)

I
(4. l 3)

(4.14)

The effect of precision error in multiplication can be demonstrated by

working with only the low-order coefficients of the participating poly-

nomials. Previously, the low-order coefficient of Equation (4.8) was

determined t6 be p from Equation (4.11). The low-order coefficient of
n

Equation (4.13) can be determined in a similar manner as

(4.15)

Dividing pn by p~-l and again chopping the result to four significant

digits, an for Equation (4. 14) becomes

34

ala2a3 ... an - (£2a.4a5 ... an+ E3a5a6 ... an+ En-1)

a 2 a 3 . . . an - (£ Z a Sa 6 . . . an + £ 3 a 6 a 7" . . an + E: ~ - 1) + £ d

(4.16)

where Ed is introduced by chopping after the division operation.

To i 1 lustrate quantitatively the size of this error, a numerical

example can be used. Let n=5, and each a. be real and contain two signi-
1

ficant digits and their numerical values be given as (which the machine

carries as 4 digits)

al 11.00 (4. l7a)

a2 = 22.00 (4. 17b)

a3 = 68.00 (4.l7c)

a4 35.00 (4.17d)

as = 4.20 . (4.l7e)

The low-order coefficient of Equation (4.8) becomes (with 4 digit arith-

metic)

PS= 2417.0 x 103 (4. 18)

which has a total error equal to 2032. The low-order coefficient of Equa-

t i on (4 • 1 3) i s

2
P4 = 5757.0 x 10 (4. 19)

with a total error equal to 56. Carrying out the division of Equation

(4.16) and chopping the result to 4 digits ~S is obtained as

~5 = 4. 198 (4.20)

which is in error by 0.002 or 0.05 percent.

This error may seem somewhat small, so the next example illustrates

the effect of these errors, coupled with the errors introduced by

35

addition and subtraction, as they are accumulated during the entire poly-

nomial division process. ·The polynomial in Equation (4.8) calculated

with four digit arithmetic using the values given by Equation (4. 17) is

pl (s) = 2.417 x 106 + l.009 x io6s + 1.286 x 105s2

+ 6.592 x 103s 3 + 1.402 x 102s 4 + s5

and the polynomial given by Equation (4. 13) becomes

p2 (s) = 5.757xl05 +1.034xl05s+6.021 x103s 2

+ 1. 36 x l o2s 3 + s 4 •

(4.21)

(4.22)

Performing the division in the following manner (see Equation (4.23) be-

low). the result is

4. 2 + s _ 900s + 80s2 + 0.2s 3
P 2 (s)

(4.24)

The quotient of Equation {4.24) is in error due to the presence of the

nonzero remainder term, even though the term 4.2 + s is correct. This

example illustrates how the errors of multiplication are amplified by

addition. The effects of finite-precision error become more pronounced

as the order of the polynomials increases.

In general, the result of the division will notyieldasexactan an-

i swer as in this example. If p1 from Equation (4.8) is divided by the

.·:;
first-order polynomial p3 from Equation (4. 14), ·using again the same

numerical values, the result becomes

pl (s)
--,.--..- = P3(s)

2 3 4 2000 5752 + 1033s + 6020s + 136s + s + n-r:::l
P3\S/

(4.25)

When compared with Equation (4.22), the error becomes evident. While

...;,._,.: .. 'f~.'·~.,.~··

4.2 + 5

p2 (s)/2.417xl06 + 1.009xl0-6 ~ ~--1.2_8_6~l05~2 -; 6.592x10 3s 3 + 1~40;~1-0ts 4 + s 5

6 5 2 3 3 2 4 5 -(5.575x10 s + 1 .034x10 s + 6.021xl0 s + l .360xl0 s + s

2.417xl0°--;-4~3-33~1o's ~~2ox104s2 + 5.710xl02s 3 + 4.2xlO(f~lf

6 5 4 2 2 3 0 4 -(2.417xl0 + 4.342xl0 s + 2.528xl0 s + 5.712xl0 s + 4.2xl0 s
2 1 2 -1 3

- 9.000xlO s - 8.000xlO s - 2.000xlO s

(4. 23)

w
O'

37

these results by themselves mc:w be tolerable, the controller synthesis

computation requires many of these types of operati~ns. As error-contam-

inated results of one calculation are used in subsequent calculations,

the errors propagate and become amplified. When the operations are done

using polynomial matrices, finite-precision arithmetic results in even

greater errors.

The third major problem is caused by the manner in which the frac-

tional part of a number is represented with floating-point arithmetic.

Only radix fractions can be represented exactly (up to the number of

digits of precision) using floating-point arithmetic. 1 All other frac-

tions must be approximated. This need to approximate certain fractions

causes additional error in the results of the multiplication and addition

operations. This additional error is called noise and in general will re-

duce the number of digits of precision actually available on a certain

machine [60].

Root Representation

In light of the problems associated with finite-precision, floating-

point arithmetic, an alternative method of representing polynomials was

investigated. Instead of storing the coefficients of the polynomials

~ directly, the actual roots (complex and real) are stored along with a

gain value.

There are several advantages associated with the root representation

method. First, the magnitudes of roots are smaller than the magnitudes

1A radix fraction is a fraction which can be expressed as some mul
tiple of J/p0 , where p is the base of the machine arithmetic and a is a
positive integer.

38

of coefficients. Second, for most engineering problems, roots usually

need only to be accurate to two or three significant digits requiring

less precision than coefficients. Third, the multiplication of polynomi-

a.ls is simple and introduces no error since no actual arithmetic is re-

quired. Finally, the GCD between polynomials is easily determined by com-

parison of their roots.

The main disadvantage of the root representation method are polynomi-

al addition and division. Addition of polynomials in the root representa-

tion requires the evaluation of an equation of the form

K1 (s + al) (s + a 2) . . . (s +a j) + K2 (s + S l) (s + B 2) . . (s + Bk)

=K3(s+\ 1)(s+\2) ... (s+\i). (4.26)

Here the K1 and K2 are known gains of the two polynomials to be added and

the Q. and S. are their known roots. Addition requires the determination
I I

of the gain K3 and the unknown roots designated "r The only method which

could be devised to solve this equation required the use of a factoring

routine.

Two options were investigated to do the factoring. The first option

was to use an analytic root finding routine to determine the roots of the

function

(4. 2 7)

directly. The other option was to first compute the coefficients of each

polynomial term, add the two terms, then use a polynomial factoring rou-

tine to determine the desired roots.

The second option nullified the benefits of the root representation

method which was developed to avoid the problems associated with

39

representing polynomial coefficients. The first option was difficult be-

cause the number of roots, JI,, in the sum was sometimes difficult to deter-

mine. Both methods were very time consuming since polynomial addition is

required often during the controller synthesis.

The algorithms employed to do the factorization produced results of

insuffici~nt accuracy and the controller computation deteriorated faster

than with the direct polynomial representation method. Polynomial divi-

sion suffers the same ill effects that addition does because it requires

a series of polynomial subtracts. Until a suitable method to do polynomi-

al addition and division is found, the root representation method cannot

be used. Once the addition and division problems are solved, new algo-

rithms for spectral factorization and partial fraction decomposition will

still have to be developed.

Summary

The various techniques out! ined in this chapter were all investigated

during this research in an effort to determine whi.ch could be appl led to

the controller synthesis program. It was determined that the exact meth-

ods were extremely reliable; however, the real floating-point methods

yielded comparable results when the problems mentioned in the previous

sect ion were accounted for correctly. The exact methods were found to be

usable for the pre! iminary steps in the synthesis process; such as the

inversion of the A (s) matrix of the generalized model representation.
p

Of the exact methods, the REDUCE programming system proved the most valu-

able. The other exact methods require complex programming to perform the

arithmetic and large amounts of memory to carry the large number of digits

in the coefficients which accumulated during computations.

40

Once suitable methods were found for avoiding the problems of float

ing-point arithmetic (i.e., scaling, increased precision, reduced noise)

it was discovered that for many small scale control systems, floating

point arithmetic could be used to solve the entire synthesis problem. It

was also possible to solve the.generalized model representation, Equation

(3. 18), using floating-point, for the smaller control system. The next

chapter describes the various algorithms employed in the controller syn

thesis.

During the investigation of the numerical problems associated with

the use of polynomial arithmetic in the controller synthesis program,

some major computation trouble areas were identified. First, accurate

calculation of the GCD of polynomials is of utmost importance to the suc

cess of the overall synthesis program. The GCD calculation using float

ing-point arithmetic and direct polynomial representation, is the most

numerically difficult computation of all the basic polynomial operations.

Second, the accuracy to which the more sophisticated computations, such

as spectral factorization, can be performed directly affects the success

of the 6verall synthesis. Finally, once any significant error contami

nates the polynomial coefficients during the controller synthesis calcu

lation, it is very rapidly propagated and amplified and the ability of

t the program to determine a solution controller is greatly impaired. The

error propagation problem becomes worse when controllers for multivari

able systems are being computed by the program,due to the fact that the

computations involve rational polynomial matrices instead of simple

rational polynomials.

CHAPTER V

DIGITAL COMPUTER IMPLEMENTATION OF THE

OPTIMAL CONTROLLER DESIGN THEORY

Direct polynomial representation and finite-precision, floating-

point arithmetic were selected as best for the controller synthesis pro-

gram. This selection was made because: (1) the available algorithms for

spectral factorization utilized floating-point arithmetic; (2) methods

were devised as a result of this research to avoid the major problems

associated with finite-precision, floating-point arithmetic; (3) the par-

tial fraction expansion algorithm developed by this study required float-

Ing-point arithmetic. Also, the use of direct polynomial representation

and floating~~oint arithmetic led to a computer program which was less

complex and more efficient than the program which would have resulted

had any of the exact theory been implemented. Direct polynomial repre-

sentation was chosen instead of root representation due to the lack of

an accurate polynomial addition routine for the latter.

This chapter describes the algorithms used in the prototype synthe-

sis program and the details related to floating-point arithmetic. The

information presented here is one of the major contributions of this work.

Basic Operations

Polynomial Arithmetic

In order to avoid the problems associated with the use of finite-

41

42

precision floating-point arithmetic, three important features were imple-

mented in the synthesis program. First, the precision of the entire pro-

gram was increased to the maximum allowed by IBM/370 FORTRAN. This was

accomplished with the aid of the extended precision option of the IBM

FORTRAN Level H compiler and resulted in reliable precision to 34 signi-

ficant digits [61]. Second, sealing was implemented to avoid large mag

i'
~ nitude differences between the coefficients of various polynomials.

Finally, an algorithm was developed and implemented for the addition and

iubtraction of individual numbers which employed rounding to prevent pro-

pagation of calculation noise.

The first feature increased the precision of every polynomial co-

efficient to 34 significant digits and also increased the precision of

machine level arithmetic to 34 significant digits. The second feature,

sealing, was used to reduce magnitude difference between the coefficients

of a polynomial. Scaling, sometimes called frequency sealing, has the

effect of dividing all the roots of a polynomial by a constant such that

their magnitude approaches one. Scaling can be applied to polynomials

by

s 1 = rs (5. 1)

where r is a ·scaling constant. The value of r is chosen to obtain mini-

mal range in the coefficient magnitudes. As an example, the polynomial

of Equation (4.21) can be scaled by letting

s 1 = 10s. (5.2)

Equation (4.21) now becomes

pl (s 1) = 2.417x106 + 1.009x107s + 1.286x107s 2

'+ 6.592xl06s 3 + l.402xl06s4 + 1 .Ox105s 5 (5. 3)

and the magnitude difference between coefficients is greatly reduced.

This technique works well with rational polynomials since normalization

of either the numerator or denominator polynomial will further reduce

the magnitude of all of the coefficients. Properly adjusted coeffi~ient

magnitudes help prevent exponent overflow and underflow errors during

subsequent computations.

Unfortunately, sealing does not help the precision problem, and will
'
" usually make it worse. As the rational polynomials are scaled and nor-

malized, the magnitudes of the coefficients tend to become less than

unity, which results in additional calculation noise and therefore reduc-

ed precision. As the order of the polynomials increases, the precision

required for .accurate representation may exceed the hardware capabi 1 ity

of the computer. The only solution to insufficient precision is an in-

crease in precision. Hence, large optimal control problems cannot be

solved unless the computer floating-point precision is increased or soft-

ware type multiple-precision arithmetic [62] is employed.

The basic polynomial operations were implemented by algorithms which

are similar to those of Reference [54] except for the GCD operation. The

GCD algorithm was a version of the one proposed by Matthew [57]. The

third feature was included in all of the polynomial arithmetic routines.

f This feature proved to be a major contribution to the success of the

overall synthesis program and it is discussed here in detail.

Whenever the basic polynomial routines require add.ition or subtrac-

tion of two numbers, a special routine is called to perform and monitor

the required operation. Even though every number in the program is stored

as an extended precision word (34 significant digits), the algorithm de-

veloped considers only part of the total number of digits valid during

44

addition or subtraction. The remaining digits are considered to be cal

culation noise. The addition and subtraction rout~ne first adds or sub

tracts the numbers normally, then tests the results. The test is per

formed in such a way that the effect is. the same as if the numbers were

first rounded to some preset number of valid digits before they are added

or subtracted. If. the test determines the result should be zero, the

routine sets the result to identically zero.

The number of digits to be considered significant in addition or

subtraction is set at the start of program execution and can be adjusted

at various points during the controller computation. This value is ini

tially set to a value which prevents calculation noise from being propa

gated and provides for the greatest number of significant digits for all

polynomial coefficients. A value between 26 and 28 was found to be the

maximum which could be used with FORTRAN extended precision arithmetic.

The ability to alter the number of digits at various points within the

synthesis program allowed the precision of the numbers to be progressive

ly reduced to account for errors introduced by the various computation

steps of the program.

For purposes of this research, addition and subtraction were also

monitored to determine whether the magnitudes of the two numbers were

compatible. For example, if the number of val id digits is set to 30,

numbers whose magnitudes differ by more than 1029 were considered incom

patible. The addition and subtraction routine merely reported the occur

rence of this condition. This monitoring was done to verify correct

operation of the synthesis program and did not always indicate an error

condition.

Both the above feature and the increased machine precision contributed

45

significantly to improved performance of all the basic polynomial opera

tions. Sealing, in general, does not have any significant effect on

arithmetic operations except to increase calculation noise slightly and

reduc.e the possibility of exponent underflow or overflow. The operations

of polynomial division and especially the GCD calculation were most sen

sitive to precision.

GCD Calculation

Accurate calculation of the GCD between two polynomials is one of

the most critical calculations of the entire synthesis process. It is

used to keep the numerator and denominator of all rational polynomials

prime. It is critical because the validity of the synthesis theory re

quires that the rational polynomial elements of certain matrices have no

common factors between numerator/denominator pairs. The matrices defined

by Equations (A. 12) and (A. 13) in Appendix A are examples of these criti

cal matrices.

Since the GCD calculation is critical, the algorithm which was em

ployed by the synthesis program is outlined here. The algorithm is given

the coefficients of two polynomials for which the GCD is to be computed.

The following steps are then performed:

1. The zero valued roots of both polynomials are removed by in

specting the low-order coefficients. The number of zero roots common to

both polynomials is retained.

2. Each polynomial is normalized such that its low-order coeffi

cient is unity.

3. The polynomial of lowest order is subtracted from the other.

The subtraction is done by calling the polynomial subtraction subroutine

which employs the special addition and subtraction routine.

4. The results of the subtraction is then checked for the zero

polynomial. If the result is the zero polynomial, either of the two

polynomials is the correct GCD. Th~ GCD is made monit by high-order nor-

malization.and the number of zero roots retained in step 1 are inserted.

If the result is not the zero polynomial, the calculation proceeds.

5. The zero root is removed from the polynomial obtained in step 3.

6. At this point there are three polynomials. The polynomial hav-

ing the highest order is discarded and the calculation repeats from step

2 using the two remaining polynomials.

The theory which supports this algorithm is outlined in Reference [57].

The following example demonstrates the effect of noise in the above

algorithm and the effect of precision. The two polynomials are those

used for the example in Reference [57] and are defined as

pl (s) = {s 3 + 3s2 + 9s - 4)(s5 + s4 - 3s2 + 2s + 2)

8 7 6 5 4 3 2
= s + 4s + 12s + 2s - lls - 19s + 36s

+ 10s - 8 (5.4)

and

p2 (s) = (s 3 + 3s2 + 9s - 4) (s 2 - 10s + 5)

= s5 - 7s 4 - 16s3 - 79s2 + 85s - 20. (5. 5)

The calculation of the GCD of p1 (s) and p2 (s) was carried out using IBM

double precision (16 digits) arithmetic and the algorithm described

above. Notice that each coefficient has two significant digits. By set-

ting a special variable (named NDIG) to the value of 2, the polynomial

~·.

47

subtraction routine is instructed to consider only two digits in each co-

efficient of the polynomials being subtracted to be significant. With

NDIG set equal to 2, the algorithm calculated the GCD of pl (s) and p2 (s)

to be 1.0 (no common factors).· When NDIG was set to values between 3

and 12 inclusive, the GCD was obtained to be (with all actual 16 digits)

GCD(pl (s), p2 (s)) = 1.000000000000000 s 3

+ 3.000000000000006 s 2

+ 9.000000000000019 s

- 3.999999999999942 (5.6)

When NDIG was set to any number greater than 12, the GCD was again calcu-

lated to be 1.0. This result implies that at least three significant

digits are required to compute the correct result and that noise prevents

the result from being obtained with more than 12 significant digits.

Rational Polynomial Matrix Arithmetic

Rational polynomial matrices can be represented in one of two ways.

Let

P (s) =

pl 1 (s)

P21(s)

PlJI, (s)

Pu, (s)

(5,7)

where each pkt(s) is a rational polynomial with coefficients of the form

of Equation (4.2). If the least common multiple (LCM) of all the denomi-

nator polynomials of P(s) is calculated and labeled g(s), then by

~

48

multiplying each element of P(s) by g(s), the matrix can also be repre-

sented in the form

pl l (s) Pj 2 (s) Pj g, (s)

Pz 1 (s) Ph (s) Pzg,(s)

P(s) 1 (5. 8) = 9GT

pk 1 (s) Pk2(s) pkt (s)

where each pkt (s) is polynomial.

Through experience during the course of this research, the represen-

tation of Equation (5.8) was found to be the most suitable. The reason

this representation was selected is that this form is generally required

by the special algorithms (such as canonical decomposition, matrix inver-

sion, and spectral factorization) of the synthesis program. The matrix

form of Equation (5.8) is easier to manipulate within a computer program,

and matrix arithmetic requires fewer polynomial operations than the alter-

native representation of Equation (5.7). The disadvantage of the repre-

sentation of Equation (5.8) is that polynomials pkt(s) and g(s) will

generally be of higher order and the magnitude of their coefficients will

be larger than the polynomials in Equation (5,7).

Special Matrix Operations

Rational Polynomial Matrix Inversion

Given a polynomial matrix Pj(s) and its scalar polynomial divisor,

the inverse of matrix P1 (s), defined as

49

P1(s) = gfsr [Pj(s)], (5.9)

is calculated in the following manner. By using a procedure similar to

the one described by Gantmacher [63], P](s) is reduced to a diagonal matrix by

a series of row and column operations. The result of all row operations

is represented as an elementary matrix U(s) and the column operations as

J an elementary matrix V(s). The operation is represented by the equation

U(s) P] (s) V(s) = Pd. (s). 1ag

The inverse of P1 (s) is defined as

-1
p 1 (s)

Using Equation (5.5), the inverse of P] (s) is

-1
= V(s) Pd. (s) U(s). 1ag

(5. 10)

(5. 11)

(5. 12)

Once U(s), V(s), and Pd. (s) are obtained, it is a simple matter of 1ag

inv~rting Pd. (s) and carrying out the required multiplications. The 1ag

final result is then put into the required rational polynomial matrix

form.

The main problem experienced with this algorithm was the very high-

order polynomials during the diagonal ization process. When the order of

these polynomials increased to the point where their coefficients could

no longer be accurately represented, the algorithm failed.

Coprime Decomposition of Rational

Polynomial Matrices

A coprime decomposition algorithm is required to do the operations

50

shown as Equations (A.3) and (A.4) in Appendix A. The algorithm developed

follows the theory of Jabr [64] which is outlined here.

By a suitable set of elementary row and column operations, the ra-

tional polynomial matrix F(s) P(~) can be reduced to its Smith-McMill-ian

form (44] and becomes 1

where

F(S). P(s) = U(s) (Qc (s) $ On-k,m-k) V(s)

rl (s)
c

n i (s)
= diag

d 1 (s) ' . . . '

(5.13)

(5. 14)

The subscript k equals the normal rank of then xm matrix F(s) P(s). Each

numerator polynomial n.(s) is relatively prime to its denominator, d.(s);
I I

n.(s) divides n. 1 (s) without remainder and d .. l (s) divides d. (s) without
I 1+ I+ I

remainder.

Thi~ reduct1on is accomplished algorithmically using the method de-

scribed by Gantmacher [63] for reduction of matrices to canonical form.

The F(s) P(s) matrix is assumed to be in the form

F(s) P(s) = g-fsr [P] (s)] (5.15)

where P] (s) is a polynomial matrix and g(s) is the LCM of all the denomi

! nator polynomials of F(s) P(s). P] (s) is reduced to canonical form result-

i ng in

(5. 16)

where U(s) and V(s) are elementary polynomial matrices representing the

1The symbol (9 implies 11 direct matrix sum. 11

'

•

51

row and column operations used for the red~ction. The matrix Q' (s) is of
c

the form

(5. 1 7)

Now by calculating the GCD between n; (s) and g(s) and dividing

n ! (s)
n. (s) I 1,2, ... , k = GCD(nj (s), g (sJ) I

.(5.18)

and

d. (s) = g(s)
= 1,2, ... , k

I GCD(n; (s), g(s)) (5. 19)

are obtained. Since each n. (s) is relatively prime to its mated. (s),
. I I

there exist two polynomials p.(s) and q.(s), q.(s) =I- 0, such that
I I I

p.(s) n.(s} + q.(s) d.(s) = l; i = l, 2, ... , k.
I I I I

(5.20)

Each p. (s} and q.(s) are obtained algorithmically by solving k separate
I I

sets of simultaneous equations. A suitable equation solver is employed

which includes an iterative solution improver for accuracy and can return

the number of significant digits available in the solution.

Each set of simultaneous equations is set up in the fo 1 I ow i n g manner.

Let the order of n. (s) be j and the order of d. (s) be JI, and
I I

i i i 2 a'. sj n. (s) = a + a 1s + a2s + . . . + (5.21)
I 0 J

and

d. (s) bi i i 2 i .Q,
(5.22) = + bl s + b2s + . . . + b.Q, s

I 0

Assume the order of p. (s) and q. (s) to be .Q, - 1 and j - 1, respectively, and
I I

p. (s)
i i i 2 i -1

= c 0 + c I s + c2 s + . . . + c - l s
I

and

The matrix equation

i
a

0

i
a.

J

0

0

0 . . .

i
a2

i
a.

J

0

(Q,+ j-2) x (Q,-1)

0

i
a

0

i
al

i
a2

0 0

bi bi
2 0

bi
!l

bi
l

0 bi
!l

bi
2

0

0

(Q,+j-2)x{j-1)

i
c

0

i
CQ,-1

i
e

0

i
el

i
e2

52

(5. 23)

(5.24)

0

0

0

= ..

(5.25)

rs the desired simultaneous equation set which must be solved to obtain

i i i i i i i Now defining c o' cl ' . .. ,cQ,-1' e o' el ' e2 ' . . . ' e j -1 .

n = diag [n 1(s), n2 (s), . .,nk(s)] (5.26)

d diag [d 1 (s), d2 (s),. . ' dk (s)] (5.27)

p = diag [pl(s), p2 (s),. .,pk(s)] (5.28)

53

(5.29)

the desired coprime factors are obtained as

A(s) (d
-1

= EB 'n-k) U(s) (5.30)

B(s) = (n EB 0n-k m-k) V(s) , (5.31)

A1 (s) = V - l (s) (d EB I m-k) (5. 32)

Bl (s) = U(s)(n EB 0) n-k,m-k (5. 33)

X(s) = U(s} (q EB I n-k) (5. 34)

and

-1
Y (s) = V (s) (p EB 0 m-k , n _ k) . (5.35)

Note that since U(s) and V(s) are elementary matrices, their inverses are

easily generated during the canonical reduction phase of the algorithm.

Matrix Spectral Factorization

The two spectral factorizations in Equations (A.12) and (A.13) are

computed by the synthesis program using the algorithm developed by Tuel

[45]. While spectral factorizations are crucial to the success of the

synthesis program, they are difficult to compute numerically .. If the com-

puted factors do not contain sufficient accuracy, the synthesis program

may fail to compute any valid controller.

Matrix spectral factorization is outlined briefly here and full de-

tails of Tuel 's algorithm can be obtained by consulting Reference [45].

Given an r x r spectral matrix, G1 (s), whose elements consist of rational

polynomials, and which has the following properties: 2

1.

2.

3.

4.

G1 (s) is real, i.e., G1(s) = G1(s);

T G1 (-s) = G1 (s);

G1 (s) is of normal rank r alinOst everywhere;

G1 (jw) is positive semidefinite for every finite w;

54

I then the spectral factor, H(s), can be computed such that
:,,

T .
G1 (s) = H {-s) H(s) • (5.36)

Since Tuel 's algorithm can factor only polynomial elements and G1 (s) con

tains rational elements, G(s) is written alternatively as

(5. 37)

where Gj (s) and g(s) are, respectively, matrix and scalar polynomials.

This form is compatible with the rational polynomial matrix representa-

tion of the synthesis program. The spectral factor, h(s), is computed

for g (s) and H ' (s) for G l (s) such that

g(s) = h (-s) h (s) (5. 38)

T H' (-s) H' (s) (5.39)

~ The matrix spectral factor H(s) becomes
~

1
H(s) = ~ H' (s). (5.40)

Briefly stated, the spectral factorization G' (s) or g(s) is perform-

ed by first mapping the continuous plane onto the dhcrete plane, solving

2 The overbar denotes complex conjugation.

55

the discrete factorization problem using an iterative procedure, then map-

ping the solution back to the continuous plane. Particular attention was

paid to accuracy when this algorithm was incorporated into the synthesis

program. The effects of arithmetic precision and frequency scaling were

studied and the following conclusions were obtained:

1. The accuracy of the continuous plane to discrete plane mapping

'
~ depends heavily on the precision of the arithmetic emp.loyed.

2. The convergence of the iterative equations used to db the dis-

crete factorization is directly affected by the range of coefficient mag-

nitudes in the polynomials of G' (s) or in g(s). Pre! iminary frequency

scaling of G' (s) or g(s) can result in significantly faster convergence.

The effect of scaling is easily demonstrated with an example. The

left-hand side of Equation (A. 13) (from Appendix A) which results for

Example 1 of Chapter VI is

A(s) G(s) AT(-s) = (5.76x108 - 7.32x108s2 + l.5325xJ08s4

1.567708xJ06s6 + J.306xJ0 3s8

10 2
- I • Os) I (1 00. -s) • (5.40)

The numerator polynomial in this equation was factored using the spectral

factorization algorithm of Tuel without scaling. The factorization re-

quired 460 iterations to converge to an answer accurate to 16 significant

digits. The denominator required only a single iteration to converge due

to the fact that it is only a second-order polynomial. The matrix Q(s)

from Equation (A. 13) was obtained as

Q(s) = (2.4xl04

+ 3.970886644124943xl04s

+ l.759987654268718xl04s2

+ 2.0l4812383065610xl03s3

+ 7.304536101718718726x10ls4

+ l . os5) I (l . Ox 10 l + l . Os) .

56

(5.41)

Using a scale factor of 10.0 and the change of variable defined by Equa~

tion (5. l), the spectral function in Equation (5.40) becomes

A(s) G(s) AT(-s) = (5.76xl08 -].32xlo 10s 2 + l.5325xl0 12s 4

- 1.567708xl0 12s6 + l.306xl0 11 s8

- l .Ox!OlOs 10)/(100.0 - 100.0s) . (5.42)

Notice that the range of coefficient magnitudes is approximately half

what it is in Equation (5.40). The spectral factorization of the numera-

tor of Equation (5.42) required only 96 iterations to converge with the

same 16 significant digit accuracy. The unscaled solution for this case

is identical to Equation (5.41).

The effect of scaling was as dramatic for matrix factorization prob-

lems as it was for the above scalar problem. Example 3 of Chapter VI

demonstrates the performance of the factorization problem for the matrix

case.

The factorization of Equation (A.13) requires a slightly modified

approach. Repeated here, Equation (A. 13) is

T T A(s) G(s) A (-s) = n(s) n (-s). (5.43)

The spectral factorization algorithm, however, computes the factor n 1 (s)

such that

T T
A(s) G(s) A (-s) = ~ 1 (-s) n 1 (s) (5.44)

which is not the desired result. In order to obtain the correct factor,

the synthesis program first computes an intermediate matrix as

57

T T P1 (s) = [A(s) G(s) A (-s)] (5.45)

and the factorization is carried out using P1(s). The factorization

yields the ~atrix Q11 (s) such that

. . . T T T .
P1 (s) = [A(s) G(s) A (-s)] = n11 (-s) n11 (s) . (5. 46)

Transposing each matrix in Equation (5.46) yields

T T T P1 (s) = A(s) G(s) A (s) = Q11 (s) n11 (-s) (5.47)

Comparing Equation (5.47) with Equation (5.43), the desired factor is

T
Q (S) = Q II (S) (5.48)

Once the factorization of P1 (s) is complete, the synthesis program must

then transpose the resulting matrix factor to obtain the correct factor.

Partial Fraction Expansi-0n of

Rational Polynomial Matrices

The required partial fraction expansions are shown in Equation

(A. 19). The general problem can be stated as fol lows. Let P1 (s) be a

matrix of rational polynomials. Then the equation

(5.49)

represents the partial fraction expansion of P1 (s), where {P1 (s)} 00 is the

part associated with the pole at infinity; {P 1 (s)}_ is the part which has

all of its poles in Real(s) ~ O; and {P 1 (s)}+ is the part which has all

of its poles in Real(s) < 0.

An algorithm was developed to do the partial fraction expansion

which is based on the solution of a set of simultaneous equations. A

58

rational polynomial matrix is represented by the synthesis program in the

form

(5.50)

where P] (s) and g(s) are, respectively, matrix and scalar polynomials.

The algorithm expands each .element of P1 (s) separately; therefore, it is

necessary for the algorithm to compute each rational polynomial element

using g(s) and Pl (s). This is done in the following manner. Let P ~ . (s)
I J

be a polynomial element of P](s).

i divide to obtain

Compute the GCD of g(s) and P! .(s) and
lj

p ! . (s)
n(s) = I J

GCD(P!. (s), g(s))
I J

(5. 51)

and

d(s) = g(s)
GCD(P ! . (s), g(s))

I J
(5. 52)

which yields the desired rational polynomial element defined as n(s)/d(s).

This insures n(s) and d(s) to be relatively prime and the number of simul-

taneously equations to be solved minimal.

The denominator polynomial d(s) must be split into two polynomials,

one containing the roots which lie in Real(s) ~ 0, and one containing the

roots which lie in Real (s) < 0. These are designated d+(s) and d-(s), re-

spectively. The algorithm must now compute a(s), b(s), and c(s) such that

n(s) = c(s) +
d1ST

b(s)

d-(s)
(5. 53)

The above equation can now be rearranged into a form similar to Equation

(5.20) and stated as

4
'

59

(5.54)

The algorithm assumes the order of polynomial a(s) to be one less than

+ the order of d (s), the order of b(s) to be one less than the order of

d-(s), and the order of c(s) to be the difference between the order of

n(s) and d(s). ·If the order of n(s) is less than the order of d(s), then

c(s) is assumed to be the zero polynomial.

Matrices are set up representing the simultaneous equation set in a

manner similar to those of Equation (5.25). The difference is that the

vector of unknowns contain the coefficients of a(s), b(s), and c(s); the

solution vector contains the known coefficients of n(s); and the constant

coefficient matrix is formed using the coefficients of d+(s) and d-(s).

The equation set is then solved using a high accuracy linear equation

solver and the coefficients of the unknown polynomials are obtained.

The above process is repeated for each element of P1 (s). As the ex

pansion of each element is computed, the desired part of the expansion is

placed into a matrix. The algorithm then returns the solution matrix in

the standard matrix representation form similar to Equation (5.50).

The main problem experienced using this algorithm was the inaccura-

cies in splitting each d(s) into its corresponding right- and left-hand

s-plane parts. The splitting was done by first factoring d(s) and then

~ forming the coefficients of d+(s) and d {s) with the resulting roots. In

general, the partial fraction expansion algorithm was the major source of

t inaccuracy within the synthesis program and further research is needed to

improve the algorithm.

CHAPTER VI

EXAMPLES

Three separate examples are presented in this chapter to illustrate

the performance and application of the controller synthesis program which

has been developed.· The first examplel from Youla, Bongiorno, and Jabr

[29], is a single-input single-output controller design problem. Their

design problem is done here to demonstrate the performance of the program

developed by this research. Controllers computed by the program are com-

pared with the controller obtained through hand calculation by Youla et

al. [29].

The second example shows an application of the synthesis program to

a real, nontrivial controller design problem. The program is used to de-

sign two separate single-input single-output controllers for a stabil iza-

tion loop of an airborne laser pointing and tracking system. The two

controllers are computed for different values of the saturation weighting

parameter k (see Equation (3. 11)). The performance of both is then com-

pared with the performance of the stabilization system with its original

controll~r. · The results of this example illustrate the usefulness of the

frequency-domain controller synthesis program.

The third example is an extension of the application in example two

to the multivariable case. Although the current version of the synthesis

program was unable to completely determine a controller, the example is

useful in identifying specific problems in the numerical procedure.

60

'

61

Identification of ihese problems areas is useful for establishing future

research directions.

Example One

The example presented here is from the work of Youla, Bongiorno, and

Jabr [29], and a complete treatment of the problem can be found in the

thesis of Jabr [64]. The results computed by Jabr were used to verify

the controller computed by the synthesis program. The results presented

here comprise the first complete machine computation of a controller uti-

lizing optimal frequency-domain synthesis theory.

A block diagram of the plant used for this example is shown in

Figure 3. The plant matrix is defined as

P(s) s - 1
= s (s - 2) (6. I)

and is both unstable and non-minimum phase. The feedback sensor consists

of a pure delay element,

F(s) = -0. ls
e

which cannot be accommodated as is by the design theory.

(6.2)

To make the feedback sensor compatible the pure delay must be approx-

imated by a suitable rational transfer function. For this example a Pade

approximation is used and the feedback transfer function becomes

F (s) = F (s) F (s) =
e t

2
1200 - 60s + s

2
1200 + 60s + s

There is no feedforward in this example; therefore,

(6.3)

(6.4)

62

.....
(/')

:>.1--~~~~~~~~

+

+

0.
0
0

_J

N Cf)
......... 0

I I !...

Cf) Cf) 0 .µ - c
I 0

Cf) Q) u

(!)

II II c
0

Cf)
..-.
Cf) (!)

Q_ LL 0.
E
ro
x

LU

.
CV'\

(!) L.

+ (f) :::J Ol Cf) c .__, u.

u +

63

Other related transfer functions are defined as

p (s) =
0

(6. 5)

F (s) =
0

(6.6)

The F(s) P(s) transfer function has a pole at the origin; therefore, the

closed-loop system can track a step input with zero steady error and the

1 input spectra 1 ·density becomes

-1
Gu (s) = 2

s
(6. 7)

In this example, the input itself must be protected from saturation;

therefore,

p (s) =
s

(6. 8)

and

(6.9)

The disturbance spectral density and the spectral density of the measure-

ment noise are

(6. 10)

and

G (s) = 1 ,
m

(6. 1 l)

respectively.

The controller obtained by Jabr [63] for this system was defined as

C (s) (6.12)

'

64

where

k = 67.228808 (6. l 3a)
0

Cl l = 0.0148746 (6. l 3b)

C't2 = -9.9999638 (6.13c)

Cl 3 = -30. + jl7.320508 (6. l 3d)

131 = 2. 41327103 (f>. 1 3e)

13 2 = -9.9806404 (6.l3f)

13 3 = -33.654632 (6.13g)

13 4 = -18. 0573239 + jl4.991623 (6. I 3h)

The validity of this controller was verified by Jabr, making it a suit

able reference which the program generated controllers may be compared

against. The model in this example is not complicated enough to warrant

use of the generalized model preparation program.

The synthesis program was executed several times under identical

conditions except that the number of significant digits (variable NDIG)

was changed for each run. NDIG was initially set to 26 in all of the

runs. NDIG was then reduced after the spectral factorization to a dif

ferent value for each run. This allowed an investigation of the impor

tance of precision to the controller computation.

Table I shows the roots of the resulting controllers as they were

computed for various values of NDIG. The roots were obtained directly

from the numerator and denominator polynomials of the controller computed

by the program. The table shows that for some values of NDIG the numera

tor and denominator of the controller contain identical roots. This is

due to the fact that, with NDIG significant digits, the synthesis program

could not reduce the controller polynomials any further.

t

65

TABLE

CONTROLLERS COMPUTED FOR EX~MPLE ONE

NDIG Gain Numerator Roots Denominator Roots

24 67.2288 -0.244256 -0.244256
0.0148746 2. 41327

-2.04703 -2.04703
2.00000 2.00000
2.00000 2.00000

'
2.00000 2.00000

-9.99996 -9.98064 ~

-10.0000 -10.0000
-30.0000 ±jl7.3205 -33.6546
-30.0000 ±j17.3205 -30.0000 ±jJ7.3205
-30.0000 ±j17.J205 -30.0000 ±j17.3205

-18.0573 ±j14.9916
20 67.2288 0.0148746 -0.244256

5.04536 -2.04703
-9,99996 7. 91363xl0- I 9

-10.0000
15 67.2288 -0.244256 -0.2244256

0.0148746 2.41327
-2.04703 -2.04703
2.00000 2.00000

-9.99996 -9.98064
-1.00000 -1.00000

-30.0000 ±jl7.3205 -33.6546
-18.0573 ±jl4.9916

10 67.2288 -0.244256 -0.244256
-2.04703 -2.04703
0.0148746 2. 41327

-9.9999?> -9,98054
-30.0000 ±jl7.J205 -33.?>546

-18.0473 ±jl4.9916

7 67.2288 0.0 6. 39717xl0-3
0.0 6.50306xl0-3

-0.247569
3.05433xl0-3

-0.247569
3.05433x10-3

-0.0148741 2. 4 J1103
-2.04681 -2.04681
2.00000 1.99912

-10.0000 -9.98069
-30.0000 ±j-17.3205 -33.6546

-18.0573 ±j14.9916

I 6 67.2288 o.o
-0.244338 -0.244338
0.0148743 2.41308

" -2.04698 -2.04698
2.00000 2.00017

-10.0000 -4.42325xlo-6
-30.0000 ±jl].3205 -9.98069

-33.6546
-18.0573 ±jl4.9916

5 67.2288 0.0149125 3.87469
-IT.2113

4 67.2288 0.0149125 3.87469
-11.2113

Note: Underlined values are the roots of the actual optimal controller.

'

66

These results show that for this particular example the controller

can be reliably computed with no less than 10 significant digits and no

more than 15 significant digits. As NDIG is increased upward past 20

digits, the order of the polynomials in the controller grows, since the

noise in the coefficients prevents further reduction of the polynomials.

This can become a serious problem if the order of the controller becomes

too large for it to be analyzed.

Example Two

This example illustrates the application of the frequency-domain

synthesis program to a real, non-trivial system. The system under con-

sideration here is a rate stabilized control loop of an airborne pointing

and tracking system and is shown in block diagram form in Figure 4. Table

I I contains the definitions of the various blocks shown on the figure.

Function

RIG

J

DM

Vl

Gl

B

K

C(s)

TABLE 11

DEFINITION OF FUNCTIONS FOR THE CONTROL LOOP OF FIGURE 4

Definition

l/(s (1 + s/1667) (1 + l .2s/3769.9 + (s/3769.9) 2)

268.5

2.24

0.02(1 +s/1847)/((l +s/25)(1 +s/3562)(1 +s/12485)
(1 + s/9425 + (3/9425)2))

1666.67/(l + s/1920)

18000

921000

443000(s/35+1) (s/75.4+l)/(((s+1) (s/2557 + l) (s/697 + l)
(s/2055+1)(1 +l.2s/1094 + (s/1094)2))

-~"'"

I ... RIG C(s}

RATE LOOP

. ~;·

.... ~

o.~xK.

DM SPRING CANCEL

1 FLOW IDMr---------

J
DM

+
i---... VI

PCVD

COUPLING

GI ._....OM

Figure 4. Stabilization Loop for Example Two

B

sxJ

K . 1(11 (L

DI

--'~ .

"'i

68

This system is in actual existence and utilizes the controller form

shown in Table I I. The plant is the inner-azimuth gimbal of four gimbal,

two degrees of freedom pointing system. The control loop formed around

the blocks marked Vl and Gl is a pressure controlled hydraulic drive sys-

tern for the gimbal. Constant J is the moment of inertia in the gimbal,

OM is the effective moment arm of the hydraulic actuator, B is the effec-

t·ive damping in the gimbal mounting, and K is the spring force~ The loop

marked 11 SPR I NG CANCEL 1 ' is used to cance 1 the effects of the spring and

causes the rate loop to approximate a Type 1 system. The spring cancel

is not 100 percent and the rate loop is not a true Type 1. The block

diagram shows the gimbal inertia to be modeled with one angular degree

of freedom. The model used for comparisons in this chapter actually had

a two-degree of freedom gimbal structure with a resonance near 110 Hz.

The rate loop is driven with a rate command at the point marked 11

which is generated by a tracker system (not shown). A rate integrating

gyro (block RIG) serves as the main sensor element. Motion disturbance

in the outer gimbal system enters the stabilization loop at the point

marked o1• The primary concern of this study is the aircraft yaw vibra

tion which is transmitted through the outer gimbal to the inner gimbal.

Figure 5 shows the power spectral density (PSD) of the actual rate dis

i turbance entering the loop at point o1• The approximation is obtained

from the function

l.OxlO-l2 ((w/0.4) 2 + l((w/320+1) 2 + 1)
. 2 2

((w/56.) +l)
(6. 14)

and serves as the spectral density functions used in the controller syn-

thesis described later.

69

-60----------------..,...--------------...,...--------------,

-70

.Jl
0

0-80
en
a..

-90 .. , ,

-100 --------------~i-----------------+------------------'I
10 100 1000

FREQUENCY (Hz)

Figure 5. Actual and Analytic PSD of Disturbance Entering the
Rate Stabilization Loop .of Example Two

~

.Jl
0 -110

0
en
Cl.

er -120
0
0::
a::
w -130
w
1-
<3:
a::

-140

-150_,_ __________ ...,. ____________ +------------i
10 100
FREQUENCY (Hz)

Figure 6. PSD of the Rate Error of the
Stabilization System

1000

70

The performance of the stabilization loop of Figure 4 is shown in

Figure 6, which is the rate error response at point R1 (see Figure 4) to

·the PSD function G0(w) (Equation (6. 14)) applied at point o1. Figures 7

and 8 show the open and closed loop response of the stabilization system.

The objective of this example was to design a new controller, C(s);

which will optimally improve the performance of. the system shown. Figure

9 shows a block diagram of the plant considered for the design process.

The associated definitions of the blocks in the figure are 11sted 1n Table

I I I. The plant is the same as the plant in Figure 4, except that the var-

ious transfer functions have been simplified as shown in Table Ill. These

simplifications were necessary as an aid to reducing the numerical diffi-

cul ties during the controller synthesis process. Because of these changes

the synthesis process will produce a somewhat suboptimal controller de-

sign. The integrator at the plant input is used to account for the rate

integrating gyro which must be considered as part of the plant. The rate

integrating gyro cannot be included in the feedback measurement system

because the synthesis theory al lows only stable measurement systems. The

effects of spring have been removed so that a true Type 1 plant is possi-

bl e.

The general model representation is now formulated for this plant.

Even though the plant may not warrant the general model representation,

its use makes calculation of the necessary transfer functions easy. The

model equations can now be written as described in Chapter I I I:

R (I)
p

R (2) =
p

r 1 J
--. - R (s) Gl
s DM p

R (1) V l - s R (4) OM
p p

(6. 1 5a)

(6. 15b)

71

~ 60 0

~-, -90 \

-------- ---- - -180
40 -- ',

' -· ' A -270 -.c '" "' c \ w - \ w
w \ --360 cc

\ CJ c : ,----.
:::> 20 \ W·

!::: \ c
\ -:450 -..J \

a. \ w
:E \ "' < \ -540 <

\ J:
a.

0 \
\ -630 \

\
\
\

-720

-20
1000810 1 10 100

FREQUENCY (Hz)
~: • · Figure 7. Open Loop Response of the Rate

Stabilization System

.,
~

20 90

--------~ , ... 0

' ... -90
0

- -180 -.c en
c w - w
w -270 a:
c -20

CJ
:::> w
!::: -360 c
...I -a. w
:: en
< - -450 < :c

-40 -540
a.

-630

-60 -720
1 10 100 1000

FREQUENCY (Hz)

Figure 8. Closed-Loop Response of the Rate
Stabilization System

!i
s

~~',.

J
DM

Rp(I)
i-:..-ti VI

~

--~~~--toM~~~~~~~_,

B

GI I DM sxJ

K

Rp(5)

d1

n1

Figure 9. Block Diagram of the Plant Used for the Controller
Synthesis Process of Example Two

--.)

w

74

TABLE 111

D~FINITIONS OF FUNCTIONS ·FO~ THE PLANT OF FIGURE 9

Function Definition

J 260.0

DM 2.2

Vl 0.02 (1 + s/1800)/((1 + s/25) (1 + s/3500))

Gl 1666. 6 7 I (1 + s/1900)

B 18000.0

K 0.0 (spring cancelled)

~

75

R (3) R (2) Gl OM - R (4)
(s B + K) (6. l 5c) = p p s J p . s J

R (4) = Rp(3)/s - d1/s (6. 1 5d)
p

R (5) = Rp(3) + n1 (6. l 5e) p

Thus, the A (s) and B (s) matrices are defined as p p

Gl 0 0 0

-Vl 0 s OM 0

0
-Gl DM (s B + K)

0 A (s) = s J s J (6. 16) p

0 ff 0
s

0 0 -1 0

r 1 J

s OM

0

B (s) = 0 (6. 17)
p

-d /s
1

n 1

A FORTRAN version of the general model representation preprocessor

program (see Appendix B) was used to compute the transfer functions for

the synthesis program. Since this is a single-input single-output sys-

tern, the plant input is designated to the model preprocessor as r 1 and

the plant output was designated as R (3). The measured output was desig-
p

nated as Rp(5), the disturbance input as d1, and the measurement noise

as n1. The preprocessor used the algorithm described in Chapter V to

compute the inverse A (s) matrix. Since the FORTRAN preprocessor was
p

used, the A (s) and B (s) matrices had to be defined with the actual p p

76

numerical values for the polynomial coefficients. The program used a

frequency scaling value of 1000.0 and easily computed the required trans-

fer functions as (shown scaled):

P{s) = (5~7xl0- 6 + 3.1667xl0-6s)/(0.0°+ 3.9651xl0- 1s

+ 6. 7530xl0°s 2 + 1.0569x101s 3 +5.592xl0°s 4 + s5)

F{s) P(s) = P(s)

L(s) = L (s) = 0
0

' -1 -1 -1 2
P {s) = (3.9651xl0 +8.8205x10 s +4.2510xl0 s

0

F (s) =
0

P (s) =
0

+ 6.6667xl0-2s 3)/(3.9651x10-l +6.7531xl0°s

+ 1.0569xl0 1s 2 +5.5917x10°s 3 +s 4)

F(s) P (s) = P (s) •
0 0

.

(6.18)

(6. 19)

(6.20)

(6. 21)

(6.22)

(6.23)

(6.24)

The P (s) matrix was set to unity by the preprocessor program, but s

the saturation point to be protected was at the output of the gyro inte-

grator. P (s) was set manually to be
s

P (s) = 1.0xl0-3/s
s (6.25)

Since the effects of the spring K were removed, the system was capa-

ble of tracking a step type input with zero steady-state error; there-

fore, G (s) was defined as
u

-7 2 G (s) = -1.0xlO /s .
u

(6.26)

The spectral density Gd(s) was defined to be.the function shown in Equation

77

(6. 14) and when scaled is defined as

l -18 -11 2 -10 4 = (9.8345x10 - 6.1466x10 s + 6.0025xl0 s)/

(9.8345xl0-6 - 6.272xl0- 3s 2 +I .Os 4) . (6.27)

The spectral density of the measurement noise was assumed as

G (s) = 1.0xl0-3
m

(6.28) ';

i
I,
·7 and

G£(s) = 0.0. (6.29)

Matrix Qt, the transient weighting matrix, was set as

(6.30)

and for the first design to be tested, the saturat1on weighting constant,

k, was set as

k = 1.0 • (6.31)

The synthesis program was set to initially use 24 significant digits

and then to use 10 significant digits after the spectral factorization

steps. The program then computed the controller to be

C(s)
K(s/a 1 + l)

= [s/8 1 + l) \
i

(6. 32)

ii
where

K = 597.24 (6.33a)

-2
Cl l = 6.5lxl0 (6.33b)

s1
-2 = 7. 59xl 0 (6. 33c)

78

·~

The roots shown are the scaled roots obtai~ed from the synthesis program

and the unscaled roots are obtained by multiplying these values by 1.000.

Figures 10 and 11 show the open and closed loop response of the orig-
,

inal, unsimplified stabilization system resulting from the use of the com-

puted controller. Figure 12 shows the PSD of the rate error due to the

disturbance. Comparison of figure 12 with Figure 6 shows that the use of

the new controller resulted in significant reduction of system perfor-

mance.

The synthesis process was repeated with a saturation weighting value,

-8
k, set equal to l.OxlO • When the synthesis program was executed for

this run, the number of significant digits had to be reduced to seven

after the spectral factorization steps. The program computed the new

controller to be (unscaled)

where

K"" 18571.2

a 1 • 65.4

a.2 '"" 1258. 0

a. 3 ti 2134.o + j533.3

81 .. 3800 .o

s2 "" 1806. 0

s3 • 1788.0 + j2634.o

(6.34)

(6.3Sa)

(6.35b)

(6.35c)

(6.35d)

(6.35e)

(6.35f)

(6.35g)

It was observed that the numerator roots a. 2 and a 3 were fairly

close to the denominator roots e2 and s3, so the alternate controller

79

f;' 20 v

0

-, .. 0
\
\

-40 \ . -90 - ' ..c \ c -\ ... en
w ' w c -60 '---.......... -180 w
::::> -- a: ,
I- '"- ~ -...J -270 w
a. -80 I I\ c
::! ~\ -<(\ w

' en
-100 \ -360 <(\ J:

' a.
\

-120- '1 -450

-140 -540
1 10 100 1000

FREQUENCY (Hz)
J.i ,, ,.

Figure 10. Open Loop Response of Original Stabilization
System With New Controller fork= l .0

80.

% 20 :

~ '
0

4

-20 -- , -o
\ - \ .c

c -40 \ -90 - \
w \ ... -c

-60
,_

-180
(/)

:::::> -- w
I- -- w -.... - 0: ...J
a.. "'"'\ (!)

::E -80 ' /\ -270 w
' < v \ c -' w ' -100 ' -360 (/)

\, < :c
' a.. \;

-120 -450

-140 -540
1 10 100 1000

FREQUENCY (Hz)

t Figure 11. Closed Loop Response of Original Stabilization ~

System With New Controller for k = 1 .0

-.c
c -c
(/)
a.
a:
0
a:
a:
w
w
t-
< a:

I

~

I •

-80

-90

-100

-110

-120

-130
1 10 100

FREQUENCY (Hz)

Figure 12. PSD of Rate Error in Original
Stabilization System With
New Controller and k = 1.0

81

1000

where

C (s)
K(s/o: 1 +1) = _......,... __ _
(s/S 1 + 1)

K = 18571. 2

0:1 = 65.3

81 = 1806.0

82

(6,36)

(6.37a)

(6.37b)

(6.37c)

was analyzed along with the controller of Equation (6,34). The result of

the analysis showed very little difference in performance, so the results

of the analysis for the simpler, suboptimal controller is presented here.

Figures 13 and 14 show the open loop and closed loop responses of

the original stabilization system resulting from the use of the control-

ler defined in Equation (6.36). When the closed-loop response of Figure

14 is compared with the original closed-loop response of Figure 8, it can

be seen that the bandwidth ha~ been increased and the resonance peak

around 10 Hz has been significantly reduced.

Figure 15 shows the PSD of the rate error due to the disturbance.

Comparison of Figure 15 with Figure 6 shows significant improvement in

the ability of the stabilization system to reject the disturbance enter-

ing the loop.

An interesting measure of performance is illustrated in the compari-

sons of Figure 16. In this figure the cumulative RMS power in the rate

error of the stabilization system for the different controllers is plot-

ted. The cumulative RMS levels at 1000 Hz are representative of the

total RMS in the rate error resulting from the disturbance. The objec-

tive of the optimal controller design was the minimization of the mean-

square rate error; therefore, the curves in Figure 16 provide an

v

-.c
c -w
c
::::>
!::
-' a..
~
<(

60 90

40 0

20 -90
... -........ ,~

....... ,
0 \ I\ -180

•• 1 \

\
\ -20 \ -270

\
\
~
~ -360 -40 ~
~
~

. ~

-60 -450

-80 -540
1 10 100 1000

FREQUENCY (Hz)

Figure 13. Open Loop Response of the Original
Stabilization System With N~w
Controller and k = 1.0 x 10-t1

83

-Cf)
w
w
a:
C)
w
c -w
Cf)
<(
:c
a..

84

1 i
40 0 ,,

... ,
' 20 ' ', -90 ,__. -- ', en

.c 0 -180 w
c i\ w - a:
w ', CJ
c -20 -270 w
:::> \ c
!:: \ -' w ...J ,. \
Q.. -40

'
-360 en

::1E <
< :c

~
Q.

-60 -450

-80 -540.
1 10 100 1000

FREQUENCY (Hz)

Figure 14. Closed Loop Response of the Original
Stabilization System With New
Controller and k = 1.0 x 10-8

ij j
..

' -.c
0 -0
Cf)
a.
a:
0
a:
a:
w
w
I-
<(
a:

-90

-100

-110

-120

i
f

85

- 130-1--~~~~--10~~~~----1~0-0 __________ 1 __ 000

Figure 15.

FREQUENCY (Hz)

PSD of Rate Error in Original Stabil iz~tion System
With New Controller and k = 1.0 x 10-t.5

,, .,

t ,,

10.0

¥

:~
l

l 7.5

I{)

9
x
a::
L.LJ
3 5.0
0
a.

::E
:J
(.)

2.5

I
I

/ , ,
0.0

I

Figure 16.

-·-/ ,
_____ ./

--- -
f

I -I -::--I z,,
Full , ,,..
Controller '4'~
k = 1.0 r

I
I

I I
f '

' ~ I
11

I'
I .JI

,. I

' / I r / .

I ~r·
'

I ,
Reduced I

I/
,

Contra l ler I /,
k = 1.0)(10-8 I I I /,I

I // Full
/ Controller

... Y k;:: 1.0)(10-8

10. 100 IOOO
FREQUENCY (Hz}

Comparison of the Cumulative RMS Power
in the Rate Error of the Original
Systems for Various Control le rs

86

' ·,
;i
t~
W, ..
~·

~

87

indication of how well that objective was achieved. It is also interest

ing to note that the use of the new controllers (with k = l.Oxlo-8) tends

to reduce the power levels in the lower frequency region.

It should be noted that the analytic disturbance PSD function (Equa-

tion (6.14)) is flat after JOO Hz. This causes the rate error RMS levels

of Figure 16 to be high; however, if the PSD function were made to de-

crease after JOO Hz, the levels would be lower. The flat PSD function

was used for the synthesis because actual PSD data were uncertain after

JOO Hz.

Finally, the open and closed loop responses of the simplified sta-

bil ization system with the controller of Equation (5.56) are shown in

Figures 17 and 18, respectively. Comparison of these figures with Fig-

ures 14 and 15 shows the use of the simplified model for the controller

designs was reasonable.

Example Three

In this example, the design of two-input two-output controller for

the plant shown in Figure 19 was attempted. The function definitions for

the various blocks shown in the figure are the same as those for Figure 9

and are listed in Table Ill. In this example, the simplified plant of

example two has been expanded to include an ideal tracker. The integrat-

or representing the rate integrating gyro has been removed from the front

of the gimbal drive system and its output was designated as a plant out-

put.

The general model representation was used to compute the transfer

function matrices for the synthesis program. The plant input was desig-

nated as r 1 and r2 , the plant output was designated as R (5) and R (6). p p .

60

-.0
c
- 20
w
§ 0
!::
..J
a.. -20
~
<

-40

--90

-- ,
\

' \ \
' \
\ ----------...... ~ -- ~,
~----- . ' ~ ',

' \ \
\

\
\
\ ',

0

-90
-"' w
w
0::
CJ
w
c -

-180 w
"' <

-270

J:
0..

-60--~~~~~.._~~~~~_,_~~~~~--360
1 10 100 1000

Figure 17.

FREQUENCY (Hz)

Operi Loop Response of the Simplified Stabilization
System \.Jith New Controller and k = l.O x 10-8

88

·-.c
0 -w
0

20

:::::> -20
!::
..J

~ -40

0

~so

-(/')
w
w
a:
C!J
w
0 -w

-180 "' < :c:
a.

-270

<-60--~~~~---i----~~~~--~~~~~--360
1 10 100 1000

Figure 18.

FREQUENCY (Hz)

Closed Loop Response of the Simplified Stabilization
System With New Control]er and k = 1.0x10-8

39

r,

r2 ~ J
OM

...&.:.',"';-. .,,.,.;..

_::+-"'

---,,,. -,
DM __.

. .----
B .--~1 I

I I a IRo(3) I
VI

K

d1

Figure 19. Block Diagram of the Plant Used for the ·controller
Synthesis Process of Example Three

"'ilL
~

- I l I Rp(5)

s
'-

I l I Rp(6)

s
'-r-a

\.0
0

~t

i

The disturbance input was again designated to be d1. No noise input was

considered in this example. The FORTRAN version of the model preproces-

sor was used and the polynomials were frequency scaled using a scale fac-

tor of 100.0. The necessary transfer function matrices were computed as:

P(s) 1
= -p ,...,I (.-s~) (6. 38)

where

p I (S) = Q.O + 3.9651x103s + 6. 7530xl0 3s 2 + 1.0569x103s3

' 1 4 5
+ 5. 591667x10 s + 1 . Os (6.39a)

pl 1 (s)
' l 1 . 1 2 3.9651x10 + 6. 7530x10 s + 1.0569x10 s

-1 3 -2 4 + 5.591667x10 s + 1.0xlO s (6.39b)

P12 (s)
-1 ' -2

(6.39c) = -5.7x10 .-3.1667x10 s

P22(s) -pl2 (s) (6.39d)

P21 (s) = 0 (6.39f)

F(s) P(s) = P(s) (6. 40)

L(s) = L (s) = 0 (6. 41)
0

1 [qll (s) ql2(s)l
p (s) = p I (5) (6.42)

0
q21 (s) q22(s)

and

t
q 11 (s)

1 0 -1 2 = -3.9651x10 - 8.8205x10 s - 4.2510x10 s

- 6.6667xl0- 3s 3

·q12 (s) = 0

q2l(s) = 0

q22(s) = -ql l (s)

F (s) = 0
0

F(s) P (s) = P (s)
0 0

p (s} = [l OJ .
s 0 1

The spectral density matrix for the input was defined as

G (s)
u

0 ' ,0

0
-l.Oxl0-7

2 s

92

(6. 43b)

(6.43b)

(6.43c)

(6.43d)

(6.44)

(6.45)

(6.46)

(6.47)

The entries in this matrix indicated that the output of the gyro is re-

quired to stay close to zero and that the pointing angle is required to

~ follow a step type input. The same disturbance function used for exam-

ple two was used in this example; therefore,

Gd(s) = (9.8345xlo- 14 - 6.1466xl0-9s 2 + 6.0025xlO-lOs 4);

(9.8345xl0- 2 - 6.2]2xl0- 1s 2 + l .Os4)

The remaining spectral density matrices were zero.

The transient weight matrix was assumed to be

(6.48)

;&
t

93

Qt=[~ ~] (6.49)

and the saturation weighting constant, k = 1, was assumed.

The prototype synthesis program was not able to compute the optimal

controller due to convergence problems encountered at the matrix spec-

tral factorization steps. The underlying reasons are best illustrated

by examining the numerical values of one of the matrices which had to be

factored. The matrix from Equation (A.12) was computed by the program

to be

T T T
A1 (-s) (P (-s)QtP(s) - kP 3 (-s)Ps (s))A1 (s) =

rll(s)

r 21 (s)

rl2 (s)

r22(s)

(6.50)

where the .polynomial elements are (5 significant digits are shown but

the computations were done with 24 significant digits):

3 8 2 11 4
r 11 (s) = l .393xl0 - 4.2196xl0 s + 2.192lxl0 s

116 98 710
- 5. l 772x 10 s + 7. 6912x 10 s - 4. 3172x 10 s

5 1 2 2 J-11 . - 2 1 6
+ 1.2033x10 s - l .6969xl0 s. + 9.9723x10 s (6.5la)

-4 -2 4 2
r 12 (s) = 3.684Sxl0 - l .0315xl0 s - 1.8375x10 s

+ 5.0004xl05s 3 - 8.4279xl03s 4 - l .1804xl06s 5

+ 1. 1925x105s 6 + 8. 5845xl03s 7 - 1. 1878x103s 8

-1 9 0 1 0 -2 11
- 7.9867x10 s + 3.255lx10 s - 5.4130xl0 s

- 3.2150xl0-3s 12 +8.4791x10-Ss 13 (6.5lb)

r2l (s) = rl2 (-s)

r22 (s) = 2.3423xl0-8 - l.l356x10°s 2 +2.68J5xl0°s4

- 2.666lxl0-2s6 + 7.3018xl0-\8

-8 10 -].2094xl0 s .

94

(6.5lc)

(6.5ld)

Based on the investigations of spectral factorization and frequency seal-

ing, it is believed that the large range in the magnitudes of the coeffi-

cients within each polynomial was the major reason that the spectral fac-

torization failed. The values shown in Equation (6.51) resulted from the

scale factor of 100.0 mentioned earlier. Other attempts used scale

factors of 1000.0 and 10000.0 with no success.

The failure of the synthesis program in this example does not mean

that smaller order designs will fail. There is every indication that the

program can succeed for smaller, well~conditioned problems.

CHAPTER VI I

SUMMARY AND RECOMMENDATIONS

I

Summary i

Computer implementation of frequency-domain controller design the-

ory has been accomplished by this research. The underlying causes of

many of the numerical problems associated with the manipulation of ra-

tional polynomial matrices have been identified and arithmetic and al-

gorithmic improvements demonstrated.

The system size which can be successfully treated with the synthe-

sis program is 1 imited but significantly greater than that which can be

conveniently treated manually. The capability of the synthesis program

and theory was demonstrated in the second example of Chapter VI. It is

believed that the success attained by the program in that example will

provide the stimulus needed for continued research in this area.

Investigations made during the course of this research indicate

that the best arithmetic for use in frequency-domain controller design

programs is the floating-point arithme~ic. As the prototype program

developed by this study evolves toward a production oriented program,

the use of symbolic systems such as REDUCE combined with floating-point

type systems may prove to be beneficial. The precision of floating-

point arithmetic is the main factor 1 imiting the size of systems which

can be treated by the synthesis program. The computation of controllers

for large multivariable systems requires arithmetic precision which

95

96

exceeds the hard capabilities of all modern computers. The use of

software to increase the precision of the arithmetic is an alternative

which needs to be investigated.

Contributions

The main contributions of this research are summarized as follows:

1. A structure for frequency-domain controller design programs has.

been defined and a prototype program has been developed around this

structure.

2. A generalized model representation has been developed and dem-

onstrated.

3. Direct polynomial representation and floating-point computation

have been determined best for the controller synthesis program. This

choice was made based upon investigations of the various exact computa-

tion methods and the various floating-point computation methods~

4. Precision, calculation noise, .and large magnitude differences

in polynomial coefficients were identified as the underlying causes of

numerical difficulties associated with the use of floating-point arith-

metic in the synthesis program. Methods were devised which can be used

to overcome these difficulties.

5. It was shown that frequency-scaling significantly improved the

performance of the synthesis program and especially the spectral factor-

ization.

6. The machine computation of controllers for a real, non-trivial

plant has been demonstrated for the first time.

]. The performance of the rate stabilization loop of an airborne

97

laser pointing and tracking system has been improved by the use of the

synthesis program.

Recommendations

It is recommended that research be continued as follows:

l. lnvesti~ate the m~nner in which coefficient inaccuracies affect

the roots of polynomials and develop techniques which can be utilized to

avoid increasing the precision of arithmetic within frequency-domain syn-

thesis programs.

2. Investigate the computer implementation of suboptimal frequency-

domain synthesis theory using the methods developed by this research.

3, Determine the usefulness of high~precision software arithmetic

to synthesis programs.

4. Continue the investigation of the root representation method

with emphasis on improving the addition operation. Develop algorithms

to perform spectral facto~ization using the root representation method.

A SELECTED BIBLIOGRAPHY

[l] Kalman, R. E. "Contributions to the Theory of Optimal Control . 11

Bulletin of the Mexican Mathematical Society, Second Series
5 (1 9 60) , pp . I 0 2 - 1 I 9 .

[2] 11Special Issue on the Linear-Quadratic-Gaussian Control Problem. 11

IEEE Transactions on Autom~tic Control, Vol. AC-16 (December,
1971).

[3] Wiener, N. Extrapolation, Interpolation, and Smoothing of Station
~ Time Series. Cambridge, Massachusetts: MIT Pr-;5s, 1949.

[4] Newton, G. C., Kaiser, J. F., and Gould, L. A. Analytical Design
of Linear Feedback Controls. New York: John Wiley and Sons,
Inc., 1957.

[5] Amara, R. C. 11The Linear Least Squares Synthesis of Multivariable
Control Systems." Transactions of the AIEE, Vol. 42, Part 2
(May, 1959), pp. 115-120. ------

[6] Hsieh, H. C., and Leondes, C. T. 11Techniques for the Optimum
Synthesis of Multipole Control Systems with Random Processes
as lnputs. 11 IRE Transactions .9!!.. Automatic Control Systems,
Vol. AC-4 (December, 1959), pp. 212-231.

[7] Davis, M. C. 11 Factoring the Spectral Matrix. 11 IEEE Transactions
on Automatic Control, Vol. AC-8 (October, 1963), pp. 296-305.

[8] Bongiorno, J. J. 11Minimum Sensitivity Design of Linear Multi-

[9]

[10]

variable Feedback Control Systems by Matrix Spectral Factor-
. ization. 11 IEEE Transactions on Automatic Control, Vol. AC-14

(December, T§b9), pp. 665-673-.

Freeman, H. 11A Synthesis Method for Multipole Control Systems.i 1

Transactions of the AIEE, Vol. 76, Part 2 (March, 1957),
pp. 28-31. - -- -- .

Freeman, H. 11Stability and Physical Realizability Considerations
in the Synthesis of Multipole Control Systems. 11 Transactions
of the AIEE, Vol. 35, Part 2 (March, 1958), pp. 1-5.

[11] Chen, C. T. 11 Representations of Linear Time-lnvarient Composite
Systems." IEEE Transactions on Automatic Control, Vol. AC-13,
No. 3 (June~68), pp. 227-283.

98

[12]

[1 3]

[J 4]

99

Chen, C. T. 11 Stability of Linear Multivariable Feedback Systems. 11

Proceedings of the IEE, Vol. 56 (May, 1968), pp. 821-828.

Ragazzini, J, R., and Frankl in, G. F. SamGJed Data Control
Systems. New York: McGraw-Hill, 195 .

Bigelow, S. C. 11The Design of Analog Computer Compensated Control
Systems. 11 Transactions of the AIEE, Vol. 77 (November,
1958), pp. 409-415. -----

[15] Weston, J. E., and Bongiorno, J. J. ''Extension of Analytical
Design Techniques to Multivariable Feedback Control Systems. 11

IEEE Transactions on Automatic Control, Vol. AC-17, No. 5
(October, 1972), pp:- 613-620.

[J 6]

[17)

[J 8]

Fallside, F., and Seraji, H. 11 Design of Optimal Systems by a
Frequency-Domain Technique. 11 Proceedings of the IEE, Vol.
117, .No. 10 (October, 1970), pp. 2017-2024-. --.

Youla, D. C., Bongiorno, J. J., and Lu, C. N. 11Single-Loop Feed
back Stab ii ization of Linear Multivariable Dynamical Plants. 11

Automatica, Vol. JO (1974), pp. 159-173.

Lanning, J. H., and Battin, R. H. Random Processes in Automatic
Control. New York: McGraw-Hill, 1956.

[19] Horowitz, I. M. Synthesis of Feedback Systems. New York:
Academic Press, 1963.

[20] Kwakernaak, H. K., and Sivan, R. Linear Optimal Control Systems.
New York: Wiley-lnterscience, 1972.

[21] Rosenbrock. H. H. "Design of Multivariable Control Systems Using
the Inverse Nyquist Array. 11 Proceedings of the IEE, Vol.
116 (1969), pp. 1929-1986.

(22] Belletrutti, J., and MacFarlane, A. G. J. 11Characteristic Loci
Techniques in Multivariable Control System Design. 11 Pro
ceedings of the __!!I, Vol. 118 (1971), pp. 1291-1297.

[23] MacFarlane, A. G. J. 11 Use of Characteristic Transfer Functions
in the Design o.f. Multivariable Control Systems. 11 Proceedings
of the 2nd IFAC Conference on Multivariable Systems Theory,
Paper=-NO.J-:-3.Li, Dusse I dorfll 971) .

(24] Porter, B., and Crowley, R. Modal Control Theory and Applica-
tions. New York: Harper and Row, 1972.

(25] Rosenbrock, H. H. Computer-Aided Control System Design. New
York: Academic Press, 1974.

:I

100

[26] · MacFarlane, A. G. J. "A Survey of Some Recent Results in Linear
Multivariable Feedback Theory. 11 Automatica, Vol. 8 (1972),
pp. 455-492.

[27] Horowitz, I. M., and Shaked, U. "Superiority of Transfer Function
Over State-Variable Methods in Linear Time-Invariant Feedback
Systems Design. 11 IEEE Transactions on Automatic Control,
Vol. AC-20, No. 1 (February, 1975). -

[28) Youla, D. C., Bongiorno, J. J., and Jabr, H. A. 11Modern Wiener
Hopf Design of Optimal Controllers Part I: The Single-

[29]

1 nput-Output Case. 11 IEEE Transactions on Automatic Contra 1,
Vol. AC-21, No. 1 (February, 1976), pp.3-13.

Youla, D. C., Bongiorno, J. J., and Jabr, H. A.
Hopf Design of Optimal Controllers Part I I:
able Case. 11 IEEE Transactions on Automatic
AC-21, No. 3 (June, 1976), pp. 3]9-338.

11Modern Wiener
The Mu 1 ti var i -

Cont ro 1 , Vo 1 .

[30) MacFarlane, A. G. J. 11 Return-Di fference Matrix Properties for
Optimal Stationary Kalman-Bucy Filter. 11 Proceedings of the
Jg_, Vol. 118, No. 2 (1971), pp. 373-376. ---

[31) Barrett, J. F. 11 Construction of Wiener Filters Using the Return
Difference.11 International Journal of Control, Vol. 26
(1977), pp. 797-803.

[32] Shaked, U. 11A General Transfer Function Approach to the Steady
State Linear Quadratic Gaussian Stochastic Control Problems.i 1

International Journal of Control, Vol. 24 (1976), pp. 771-
800. -

[33] Grimbal, M. J. "Design of Stochastic Optimal Feedback Control
Systems." Proceedings of the IEE, Vol. 125, No. 11 (1978),
pp. 1275-1284. -----

[34] Bongiorno, J. J., and Youla, D. C. "On the Design of Single-Loop
Single-Input-Output .Feedback Control Systems in the Complex
Frequency Domain." IEEE Transactions on Automatic Control,
Vol. AC-22, No. 3 (June, 1977), pp. 416-423.

[35) Hearn, A. C. REDUCE 2 User•s Manual. 2nd Ed. Salt Lake City,
Utah: University of Utah, UCP-19, March, 1973.

[36] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design and
Analysis of Computer Algorithms. Reading, Massachusetts:
Addison-Wesley, 1974.

[37] Knuth, D. E. The Art of Computer Programming, Vol. ~. Semi Numer-
ical Algorithms. Reading, Massachusetts: Addison-Wesley,
1971 .

.
A
'

101

[38] McClel Ian, M. T. ''The Exact Solution of ·systems of Linear Equa
tions with Polynomial Coefficients. 11 Journal of the Associa
tion for Computing Machinery, Vol. 20 (1973), pp.---s6°3-588.

[39) Horowitz, E., and Sahni, S. 11 0n Computing the Exact Determinant
of Matrices with Polynomial Enteries. 11 Journal of the
Association for Computing Machinery, Vol. 22 (19]5)--:i)p.
38-50.

[40] Gentleman, W. M., and Johnson, S. C. 11Analysis of Algorithms,
A Case Study: Determinants of Matrices with Polynomial
Entries.'' Association for Computing Machinery Transactions
on Mathematical Software, Vol. 2 (1976), pp. 232-241.

[41] Rao, T. M., Krishnamurthy, E. V., and Subramanian, K. 11 Finite-
Segment p-adic Number Systems with Applications to Exact
Computation.'' Proceedings of the Indian Academy of Science,
Vol. 81, No. 2 (1975), pp. 515-79. ~

[42] Krishnamurthy, E. V. 11 Exact Inversion of a Rational Polynomial
Matrix Using Finite Field Transforms." SIAM Journal of
Applied Mathematics, Vol. 35, No. 3 (November, 1978),pp.
453-464.

[43] Ramachandran, V. 11 Exact Reduction of a Polynomial Matrix to the
Smith Normal Form. 11 IEEE Transactions on Automatic Control,
Vol. AC-24, No. 4 (August, 1979), pp. 638-641.

[44] Youla, D. C. "On the Factorization of Rational Matrices. 11 IRE
Transactions on Information Theory, Vol. 7 (July, 1961)--:i)p.
172-189.

[45] Tuel, W. G. "Computer Algorithm for Spectral Factorization of
Rational Matrices." IBM Journal of Research and Development,
Vol. 12 (1968), pp. 1~170. -

[46] Anderson, B. D., Hitz, K. L., and Diem, N. D. "Recursive Al
gorithm for Spectral· Factorization." IEEE Transactions on
Circuits and Systems, Vol. CAS-21, No.~November, 1974~
pp .

[47] Davis, M. C. "Factoring the Spectral Matrix.'' IEEE Transactions
on Automatic Control, Vol. AC-8, No. 5 (October, 1963), pp.
296-305.

[48] Grimble, M. J. "Factorization Procedure for a Class of Rational
Matrices. 11 International Journal of Control, Vol. 28, No. I
(1978), pp. 105-111.

[49] Downs, T. 110n the Inversion of a Matrix of Rational Functions. 11

Linear Algebra Applications, Vol. 4 (1971), pp. 1-10.

[50] Munko, M., and Zakian, V. "Inversion of Rational Polynomial
Matrices." Electronic Letters, Vol. 6 (1970), pp. 629-630.

102

[51] Pace, I. S., and Barnett, S. "Efficient Algorithms for Linear
System Calculations Part 1--Smith Form and Common Divisor of
Polynomial Matrices. 11 International Journal of Systems
Science, Vol. 5, No. 5 (1974), pp. 403-411.

[52] Barnett, S. "Some Topics in Algebraic Systems Theory: A Survey."
Recent Mathematical Developments in Co~trol. Ed. D. J. Bell.
New York: Academic Press, 1973, pp. 323-344.

[53] Collins, G. E. 11 PM a System for Polynomial Manipulation." Com
munications of the Association for Computing Machinery," Vol.
9, No. 8 (Augus~1966), pp. 578-589.

[54] System 1360 Scientific Subroutine Package, Version._1_1_1, Program
mer's Manual. White Plains, New York: IBM Corporation,
Technical Publications Department, No. H20-0205-3, 1969.

[55] Pace, I. S., and Barnett, S. "Comparison of Algorithms for Cal
culation of G.C.D. of Polynomials." International Journal
of Systems Science, Vol. 4, No. 2 (1973), pp. 211-226.

[56] Matthew, G. K. "An Alternative to Euclid's Algorithm." Trans
actions of the ASME, Vol. 101 (October, 1979), pp. 582-586.

[57] Sankaran, B. "A New Computer Technique of Root Locus Analysis."
(Unpub. M.S. thesis, Oklahoma State University, 1979).

[58] User Information for the FRQRSP Frequency Response Program.
Stillwater, Oklahoma: Oklahoma State University, Report
No. ER-75-R-109-012, January, 1978.

[59] Rosenbrock. H. H. State-Space and Multivariable Theory. New
York: Wiley-lnterscience,""1970.

[60] Sterbenz, P. H. Floating Point Computation. New Jersey:
Prentice-Hall, 1974.

[61] IBM OS FORTRAN~ (H Extended) Compiler Programmer's Guide. 3rd
Ed. San Jose, California: IBM Corporation, No. SC8-6852-2,
1974.

[62] Brent, R. P. 11A Fortran Multiple Precision Arithmetic Package. 11

Association for Computing Machinery Transactions on Math
matical Software, Vol. 4 (1978), pp. 57-70.

[63] Gantmacher, F. R. The Theory of Matrices, Volume One. New York:
Chelsea, 1977.

[64] Jabr, H. A. Modern Analytical Design of Optimal Multivariable
Control Systems. Ph.D. dfssertation, Polytechnic Institute
of New York, Farmingdale, 1975.

APPENDIX A

OPTIMAL CONTROLLER DESIGN THEORY

This appendix summarizes the main results of Youla, Bongiorno, and

Jabr [29] and serves only as a reference. Conditions for the existence

of an optimal controller C(s) are presented along with sufficient assump-

tions on the model, as indicated in Figure 1. The procedure for determin-

ing the optimal controller is also outlined. The definitions, theorems,

and lemmas presented here were obtained directly from Reference [29], and

the proofs have been omitted but may be found in the References.

Definitions, Conditions, and Assumptions

Definition 1

The plant P(s) and feedback compensator F(s) form an admissible pair

if each is individually free of unstable hidden modes and 1

(A. 1)

(The manic polynomials ~+(s) and ~-(s) absorb all the zeros of ~(s) in

1Let the distinct finite poles of A(s) be denoted by s. and their
I associated McMillian degrees by o .. The manic polynomial

I

u o.
~A(s) = l (s-s.) I

i=l I

is the characteristic den9minator of A(s). C+ denotes the closed right
half of the s-plane and C denotes the open left-hand of the s-plane.

103

104

+ -C and C , respectively, and, up to a multiplicative constant, w(s) =
+ -

1jJ (s) w (s).)

Lemma I

If the plant P(s), the feedback compensator F(s), and the C(s) are

free of unstable'hidden modes, the closed-loop of Figure 1 is asymptoti-

h cally stable if and only if

(A. 2)

is a strict Hurwitz polynomial.

Lemma 2

There exists a controller stabilizing the given plant and feedback

compensator in the closed-loop configuration of Figure I if and only if

the pair P(s), F(s) is admissible.

Lemma 3

Let P(s), F(s) form an admissible pair. Let

-1 -1 F(s) P(s) =A (s) B(s) = B1 (s) A1 (s) (A. 3)

where the pairs A{s), B{s) and B1{s), A1 (s) form any left-right coprime

polynomial decomposition of F(s) P(s). Select polynomial matrices X(s)

and Y(s) such that

A(s) X(s) + B(s) Y{s) = I .
n

(A.4)

Then, (1) the closed-loop of Figure 1 is asymptotically stable if and

only if

R(s) = (Y(s) +At (s) K(s)) A{s), (A.5)

105

where K(s) is any mxn real rational matrix analytic in C+ and which

satisfies the constraint

de t (X (s) - B l (s) K (s)) -:I 0 . (A. 6)

(2) The stabilizing controller associated with a particular choice of .ad-

missible k(s) possesses the transfer matrix

. . -1
C(s) ,,;, (Y(s) + A1 (s) K(s)) (X(s) - B1 (s) K(s)) . (A. 7)

If C(s) is defined in this manner, <ji(s) from Equation (A.2) will be strict

Hurwitz.

Assumption 1

The plant and feedback compensator form an admissible pair, the feed-

forward compensator is asymptotically stable, and the transfer matrices

P(s), F(s), and L(s) are prescribed in advance.

Assumption 2

P (s), F (s), L (s), Q(s) = PT(-s) P (s), and spectral densities
0 0 0 s s

If P (s), F (s), or L (s) repre-
o 0 0

sents a physical block, they must be stable. However, if they are merely

part of the paper modeling, it is possible to relax stability requirement.

'j The input signal, load disturbance, and measurement noises are stochasti-

cally independent.

Assumption 3

= F (s) G (s) FT(-s) + L (s) Gn(s) LT(-s). o m o o ~ · o (A. 8)

106

T
P s (s) , F (s) , (F (s) - I n) P (s) , A2 (s) Gu (s) A2 (- s) ,

T T
A2 (-s), L(s) Gd(s) L (-s), and Gm,\', (s) are ana-

lytic on the finite s=jw axis.

Assumption 4.

Let k be any positive constant,

(A. 9)

and

P (s) = F(s) P (s) + L(s) .
d 0

(A. l 0)

T T T The matrices A(s) G{s) A (-s) and A1 (-s) (P (-s) P(s) + kQ(s)) A1 (s) are

.
nonsingular on the finite s=jw axis:

Assumption 5

The data satisfy the order relations2

G (s) ~ 0(1/s2 }
u

-2 i
Gd{s)~s I

P(s) = O(sv)

O(P) + O(F) :: µ

::: o (l I ~2)

2A(s) s: O(sr) means no entry in A(s) grows faster than sr as s-+ 00 •

The order of A{s) equals r, i.e., A(s) = O(sr) if (1) A(s) s: O(sr), and
(2) at least one entry grows exactly 1 ike sr. For A(s) square, A(s) ~
srl abbreviates

limit s-r A(s) =A (A constant nonsingular matrix)
00 co

s-+ co

A(s) ~ srl implies A(s) = O(sr) but not conversely.

107

and

T 2
(P (-s) P(s) + kQ(s)) G(s):::::s I ,

m
(A. 11 f)

where < 1 µ ~ max (v - 1 , -1) .

The Optimal Controller

It can be shown that under Assumptions 1 through 5 of the previous

section, the optimal K(s), which satisfies Equation (A.6) and makes E

finite, can be found in the following manner.

Theorem 1

1. Construct two square real rational matrices /\.(s), ~(s) analytic

I · h h · · ·1 n C+ such that 3 toget1er wit t e1 r inverses

~ ~ ~

A;· (P "Qt P - k Q) Al = A" /\. (A. 12)

and

(A. 13)

2. Let

(A. 14)

and choose any two real polynomial matrices X(s), Y{s) such that

A(s) X(s) + B(s) Y(s) = I
n

(A. 15)

3. The transfer matrix of the optimal controller is given by

(A. 16)

3The indeterminate swill be dropped from subsequent representations
where there will be no confusion. A*(s) = AT(-s), A-*(s) = (A*(s))-1.

108

where 4

(A.17)

or alternatively

C = H (A-la - FPH)-l
0 0 '

(A. 18)

(A. 19)

The (nonhidden) poles of the optimally compensated loop are precisely the

zeros of the strict Hurwitz polynomial

e(s) =
ijJ;(s) 1/J~(s)

1/J FP (s)
(A.20)

plus the finite poles of K(s), each counted according to its McMillian de-

gree.

Coro 11 a ry 1

Suppose F(s) P(s) is analytic in C+. Then

C = H (Q - FPH)-l (A.21)
o r - o

where

(A.22)

(A. 23) (P
..,,,

kQ) * Ql + = A !\.
r r

(A.24)
i'::.

G = Q Q
r I"

41n the partial fraction expansion {·} + {·} + {•} of any rational
matrix, {•} is the part associated with th~ pole ~t infinity and { } • +'
{•}_the pa~ts associated with all the finite poles inc- and c+, respec-
tively.

-1
'l

l

~
·~:

109

(A.25)

and J\(s) , f;1(s) are square, real rational matrices analytic together
r r

with their inverses inc+.

Corollary 2

Let

and

then the

If P(s)

-·k - ,,,
a = J\ r J\

b J\
-1

Al y f;1

c = {a - b}

~-

p = Q (G + P Gdp")
t u 0 0

- a a + c c

minimum cost E min is given by

joo
2nj E • = Tr I p(s)ds.

min .
- J"'

F(s) is analytic in c+ (stable case),

.. r.. ..1~

p = Q (G + P GdP") - {a}" {a} .
t u 0 0 + +

Coro 11 a ry 3

(A.26)

(A.27)

(A. 28)

(A.29)

(A.30)

then

(A.31)

+ Let P(s) be square and analytic tog~ther with its inverse in C , let

F = I (unity feedback), let k = 0 (no saturation constraint), and assume
,

feedforward compensation is not employed. Then, if G and Q (G +P Gdpd")
t u 0

are diagonal matrices, the optimal controller C(s) satisfies the noninter-

action condition

P(s) C(s) diagonal matrix. (A. 32)

APPENDIX B

PROTOTYPE PROGRAM STRUCTURE

An important achievement resulting from this study was the develop

ment of a prototype computer program for frequency-do~ain synthesis of

optimal controllers. This appendix describes the logical structure of

the program and its features. The program was coded in FORTRAN on an

IBM 370 computer; however, the information presented here can be used to

develop similar programs in FORTRAK on different machines.

The process of controller design consists of three parts. Part one

is the model preparation; part two is the actual synthesis; and part

three is the analysis. Model preparation consists of the process of

generating the necessary data for the synthesis using the generalized

model representation theory presented in Chapter I I I. The definition of

synthesis and analysis is obvious. Rather than include all three parts

in one large program, it was more efficient to develop each part into a

separate program. The reason for this was that the model preparation

needed only to be performed one time, while the synthesis program would

usually be run several times for trade-off studies. The analysis was a

separate program due mainly to the fact that a program already existed

for frequency-domain analysis [58]. This program had analysis capabil

ities far beyond any that could be efficiently included directly in the

synthesis program.

Figure 20 shows the data flow through the entire controller design

process. For the model preparation program, two options were made avail-

1 l 0

NUMERICAL
VALUES

II

SYMBOLIC
MODEL DATA

.......__OPTION 1
OPTION 2 __..,..

REDUCE
MODEL PREPROCESSOR

·PROGRAM

FORTRAN SUBROUTINE
MODEL SOURCE

CODE

FORTRAN
COMPILIER

, .
. :: .• ~~

:: ::.:. -·---------
ANALYSIS RESULTS

MODEL
SUBROUTINE

111

INPUT DATA
FOR

P.ROGRAM
CONTROL.

Figure 20. Data Flow Through the Controller Synthesis System

112

able. The first option consisted of a REDUCE program to which. symbolic

information describing the matrices A (s) and B (s) (see Chapter I I I)
p p

was input. Additional information was also input which described the

configuration of the plant, feedback meas~rement system, etc •. The

REDUCE program inverted the A (s) matrix and performed the necessary ·
p .

matrix multiplies to produce the P(s), F(s)P(s), P (s), F (s), P (s),
0 0 S·

L(s), and L (s) plant matrices. These matrices were written in the form
. 0

of a FORTRAN subroutine (Subroutine MODEL) by REDUCE which could be cal-

led by the synthesis program to obtain the required transfer function

matrices. The synthesis program required a data file which contained

the numerical values for the symbols used to originally define the model.

Each matrix was defined in the proper form. for the synthesis program,

that is, each matrix consisted of a matrix of polynomials and an asso-

elated scalar divisor polynomial.

It was also determined that the REDUCE program could be made to

calculate additional intermediate matrices needed for the synthesis pro-

gram. Referring to Appendix A, these additional matrices would be the

G(s) matrix of Equation (A.9), the Pd(s) matrix of Equation (A.10), the

PT(-s)QtP(s) + kQ(s) matrix of Equatiun (A.12), and the PT(s)QtGu{s) +

P0 (s)Gd(s)PTd(-s) part of matrix r(s) in Equation (A.14). In order for

the REDUCE program to generate these matrices, the spectral density ma-

trices Gu(s), Gd(s), Gm(s), and G1 (s) had to be defined along with the

A (s) and B (s) matrices.
p p

The second option shown in Figure 20 for the model preparation pre-

processor was the use of a FORTRAN-based program. The plant model was

coded in the form of a subroutine, which was called by the model prep-

aration program to define the A (s) and B (s) matrices. Instead of the
p p

113

polynomials being represented symbolically, the FORTRAN program required

that they be represented with actual numeric values for their coeffi-

cients. Once the A (s) matrix was inverted, it was stored in a disk
p

file. Storin_g the inverted A (s) matrix allows the model preprocessor
p

to retrieve it during subsequent runs for cases where only the plant

configuration is changed, thereby avoiding the same inversion over and

over. lmplenientat ion of this feature in the REDUCE program proved

highly inefficient since more computer execution time was required to

read the stored A -I (s) matrix than was required to do the inversion.
. p

Once the FORTRAN version of the preprocessor inverted the A (s)
p

matrix, it would read the config~ration data designating desired input-

output relationships and would then write a data file which contained

the polynom!al coefficients of the P(s), P (s), F(s)P(s)," etc. transfer
0

function matrices. The synthesis program obtained these matrices by

calling a special subroutine (Subroutine MODEL) which read the data file

to define the desired transfer function matrix.

The selection as to which preprocessor option is best can only be

mad~ as later research develops the prototype design system into a more

production-oriented system. As for the prototype used in this research,

the FORTRAN option was implemented mainly due to the fact that it was

more economical to use. The FORTRAN version was also used to study prob-

lems centered around rational polynomial matrix inversion.

The logical structure of the FORTRAN model preprocessor and the

synthesis program is basically the same. The following discussion on

the program structure applies to both the model preprocessor and the

synthesis program. Since the analysis program is already well docu-

mented (see Reference [58]) it wi 11 not be discussed here.

114

The synthesis program structure is divided into six levels. These

levels, from highest to lowest, are named: 1) main level, 2) executive

level, 3) general computations level, 4) special matrix operations lev-

el, 5) basic matrix arithmetic level, and 6) basic arithmetic and memory

management level. Each level (except the main level) consists of a set

of subprograms which perform operations at the specified level. In gen-

eral, two rules apply to the routines. Rule one is the routines in one

level may only call routines in levels which are lower or it may call

routines in the same level. No routines in one level may call higher

level routines. The second rule is that no routine in one level may

perform any operation that is available at a lower level. These rules

make the overall 'program very flexible and easily modified.

Polynomial coefficients are stored in contiguous extended precision

words of memory ordered from lowest to highest order coefficient. An

integer number is stored with each set of polynomial coefficients to

specify the number of coefficients. Polynomial matrices are stored as

three-dimensional arrays such that the first dimension refers to indi~

vidual coefficients, the second dimension refers to the rows of the ma-

trix, and the third dimension refers to the columns of the matrix. This

scheme keeps the coefficients of any one polynomial together in contig-

uous storage locations. A two-dimensional, integer matrix is used to

store values defining the number of coefficients for each polynomial of

the matrix. Scalar polynomial coefficients are stored in one-dimensional

arrays with a single integer variable defining the number of coefficients

in the array.

Storage for the coefficient arrays is allocated dynamically during

program execution by the memory management systems. Dynamic array allo-

115

cations allow the synthesis program to automatically adjust the size of

coefficient arrays during execution to keep the amount of memory required

at a minimum. The total memory available for a particular problem is set

by the user before the program executes. The program user adjusts the

size of an unlabeled common block in the main program (main level). The

main program is comprised only of the necessary COMMON statements and a

CALL statement which starts the synthesis executive program. By making

the executive program a subroutine, only the main program has to be re

compiled when the total amount of available storage is changed. The

executive subroutine needs never to be recompiled.

Most coefficient arrays are allocated at the executive level. The

executive program deter~ines the size requirements for the various co

efficient arrays and calls a special subprogram of the memory management

system. The subprogram returns a suitable starting location for the

array in blank common. When the executive makes calls to routines at

lower levels, the starting memory address in common storage of any co

efficient array is passed as an argument. The receiving routine refers

to the matrix as a three dimensional matrix. The following transaction

Illustrates the process:

SUBROUTINE CONTROL

COMMON I I COMBUF(3000)

ISTARTA = MEMMAN(IS*N*M)

CALL DECOMP(COMBUF(ISARTA), IS,N,M ...

END

SUBROUTINE DECOMP(A, ISA,N,M, ...)

DIMENSION A(IS,N,M)

116

Subroutine CONTROL requests the starting location of an array for an nxm

polynomial matrix which will contain polynomials with no greater than IS

coefficients each. CONTROL then makes calls to various lower level

routines as shown. The lower level routine can now easily refer to the

individual polynomials in the matrix.

The basic arithmetic level consists of routines which add, sub

tr~ct, multiply, divide, and compute the GCD of polynomials. The spe

cial addition/subtraction routine is also at this level. By keeping

basic arithmetic of the same level as the memory management system, the

memory management scheme can be modified without having to make coding

changes at a higher level. As long as all higher level routines use the

basic arithmetic level routines for any necessary polynomial operations,

then any memory management scheme can be implemented. Since the basic

arithmetic routines are at the same level as the memory management sys

tem, they will have to be changed as memory management changes are made.

The executive level controls the sequence in which the controller

is computed. The executive calls routines in the specific computation

level to compute the controller in the following order:

11 7

1. Subroutine MODEL is called to define the transfer function ma-

trices and spectral density matrices needed for the design.

2. The coprime decompositions of Equations (A.31 and (A.4) are

computed.

3. The matrix of Equation (A.12) is computed (but not factored).
-;'\ '!c

The computation is performed by first evaluating A1P then PA1. This·

helps insure common factor cancelation between the A1 and P matrices.

The results of the above evaluations are multiplied with Qt to obtain
.. , .. .,1 ..

the term A;'p"QtPA1 · The other term of the equation is evaluated in a
·J: i':

similar manner to obtain kA 1PsPsA 1. These two matrix terms are then

added to form the final result.

4. The matrix computed in Step 3 is spectrally factored to obtain

f\.(s). 1\.-l (s) is computed in this step.

5. The matrix of Equation (A. 13) is computed by first computing

each of the following matrix terms:
·k ;'\

AF G F A o m o
·k * AL GOL A

0 !'., 0
_ ..

AG A"
u

A[FP +L][FP +L]*A*.
0 0

These terms are then added togetheI' to form the required matrix.

6. The spectral factorization is performed to obtain matrix Q(s).

-1
Q (s) is also computed in this step.

]. Matrix r(s) of Equation (A.14) is c6mputed in a manner similar

to that used in Step 4.

8. Matrix H (s) is computed according to Equation (A.19).
0

9. The controller is computed according to Equation (A.18).

Each specific computation routine makes extensive use of lower level

118

joutines to do the required scalar and matrix polynomial operations. The

specific computation routines write all their intermediate results to the

program output listing so that the synthesis process can be monitored by

the user. Special routines are provided at the basic arithmetic level

to output both rational polynomial matrices and polynomial matrices.

z
VITA

John Edward Perrault, Jr.

Candidate for the Degree of

Doctor of Philosophy

Thesis: . COMPUTER IMPLEMENTATION. OF OPTIMAL MUL Tl VARIABLE CONTROLLER
DESIGN IN THE FREQUENCY DOMAIN

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma, March 10, 1953, son of
John E. and Barbara C. Perrault.

Education: Graduated from Bishop Kelley High School, Tulsa,
Oklahoma, in June, 1971; received the Bachelor of Science
in Mechanical Engineering degree from the University of
Tulsa, Tulsa, Oklahoma, in June, 1975; received the Master
of Science degree from Oklahoma State University, Still
water, Oklahoma, in May, 1977; completed the requirements
for the Doctor of Philosophy degree at Oklahoma State Uni
versity in May, 1981.

Professional Experience: Staff Engineer, Marvel Photo Company,
Tulsa, Oklahoma, 1971-75; Graduate Research Assistant,
School of Mechanical and Aerospace Engineering, Oklahoma
State University, September, 1975-March; 1981; joined the
technical staff of Appl led Technology Associates, Albuquer
que, New Mexico, in March, 1981.

