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CHAPTER I 

INTRODUCTION 

Since the early 1960 1 s when Kalman [l] introduced state-space meth

ods into optimal control theory, most of the advancements in control 

system synthesis have utilized the time-domain techniques. The current 

popularity of the state-space design and analysis theory is evident from 

the vast amount of 1 iterature which has been published. The -so-called 

Linear-Quadratic-Gaussian (LQG) theory [2] is the cornerstone for a 

large class of significant developments. 

Although LQG and related time-domain synthe~is techniques still 

dominate the I iterature, many control engineers prefer frequency-domain 

design methods. Results are usually easier to interpret and compare in 

the frequency-domain and engineering design specifications are simpler 

and more practical. Because of its continued use in practice, frequen

cy-domain synthesis theory is beginning to reappear in the literature 

and recently has been gaining more attention. 

A variety of frequency-domain design methods exists such as trial 

and error, pol~ shifting (modal), and optimal multivariable techniques. 

Of these techniques, the optimal methods are the only true synthesis 

methods relying mostly on mathematics to provide suitable controllers 

while the other types require a fair amount of design experience to 

arrive at satisfactory results. Optimal design techniques are used to 

find controllers which optimize some predetermined measure of overall 



system performance. Performance measures for frequency-domain design 

methods usually consist of minimization of the mean square steady-state 

error between system input and output. 

Optimal design methods in the frequency-domain parallel the LQG 

techniques in the time domain; however, the frequency-domain theory of

fers several advantages. Among these advantages the major ones are: 

2 

1. Plants do not require state-space representations, only rational 

transfer functions are needed. 

2. Dynamical sensors can easily be incorporated into the design. 

3. Colored noise does not have to be treated as a special case. 

4. Simpler controllers can often be found. 

Frequency-domain methods have some drawbacks which may make the 

theory difficult to utilize. One drawback is the need for accurate 

plant models including good rational transfer function approximations 

for details such as process lays. Load disturbances and measurement 

noise must be representable by rational spectral density functions, and 

these are not always available or easily obtainable. These problems are 

present in most optimal design procedures although they can often be 

circumvented such that val id results can be obtained. 

The most serious obstacles to the successful application of fre

quency-domain multivariable controller design are the r~quired algebraic 

computations. These computations include spectral factorization, inver

sion, canonical decomposition, and partial fraction expansion of ration

al polynomial matrices. Additionally, the basic polynomial operations 

of addition, subtraction, multiplication, division, and the calculation 

of the greatest common divisor between two or more polynomials have in

herent numerical problems which add to the difficulties of the over-all 
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computation. These computations are difficult to perform manually even 

for the design of simple systems and are virtually impossible to do man

ually for more complex multivariable designs. 

The digital computer offers a viable tool to aid in the computation 

of optima1 controllers~ Once a computer program has been developed which 

is capable of performing the entire computation there should be a size

able increase in the amount and types of application of the optimal the

ory. The intent of this research was to study the development of such a 

program. 

Scope and Objectives 

The scope and objectives of this study are summarized as follows: 

1. Pick from the available optimal frequency-domain theory the one 

method which would yield the most benefit once implemented in a computer 

program. 

2. Develop a generalized method for the representation of the 

plant model and the introduction of its associated transfer function 

matrices into the design process. 

3. Investigate the various methods which could be used to repre

sent polynomials in a computer program. Investigate the numerical prob

lems associated with each method of representation. Select the method 

which will function best in the overall design program in terms of nu

merical accuracy. 

4. Develop a general prototype computer program which will compute 

the optimal controller based on the theory selected under the first ob

jective. The resulting program should be general enough to allow testing 



of various basic algorithms and accommodate a moderate range of multi

variable systems. 

5. Demonstrate the program with an example. Compare the perfor

mance of the resulting controller with that of controllers that already 

exist. Use computer simulations of the system response for the compar

ison. 

Plan of Presentation 

Chapter I I provides background information rel~ted to this study. 

4 

Major historlcal developments related to optimal frequency-domain con

trol ]er design are presented in the chapter as well as a review of cur

rent 1 iterature related to theory and algorithmic procedures. The first 

section of Chapter I I I describes the design theory which was implemented 

in the program with Appendix A providing the remaining details. The 

last section of Chapter I I I describes the generalized model representa

tion theory developed by this study. 

During the course of this research, three major algorithmic tech

niques were considered for use in the controller design program. Chap

ter IV sum~arizes the advantages and disadvantages of each method. 

Chapter V presents the algorithmic technique finally chosen and outlines 

the manner in which various operations, such as partial fraction expan

sion and polynomial matrix inversion are computed in the prototype pro

gram. Appendix B describes the mechanical structure of the program. An 

example illustrating the design process and use of the program is pre

sented in Chapter VI and the conclusions and recommendations for future 

study are given in Chapter VI I. 



CHAPTER I I 

BACKGROUND 

Historical Developments 

The major impetus to optimal frequency-domain control theory seems 

to have arisen out of Wiener's famous work in filtering and prediction 

[3]. In this work, Wiener demonstrated the solution of the Wiener-Hopf 

integral equation which results from the minimization of the mean-square 

error between the actual output of a filter and the desired or ideal out

put. By working in the frequency-domain and using a technique known as 

spectral factorization, he was able to solve the equation and obtain the 

realizable filter transfer function directly. 

Later, Newton, Kaiser, and Gould [4] published a text demonstrating 

how mean-square error minimization and the Wiener-Hopf solution could be 

used to obtain optimal compensators for single-input, single-output feed

back systems. The text appears to be the first publication to thoroughly 

discuss the optimal design of control systems in the frequency domain, 

addressing such problems as sensor dynamics, process and measurement 

noise, and plant saturation. Their methodology suffered from a major 

drawback that only open-loop stable, single-input, single-output plants 

could be accommodated. Their work considered the solution of the fixed

configuration, semi-free-configuration, free-configuration Wiener prob

lems. 

A number of related papers were later published which extended the 

5 
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work of Newton et al. [4]. Amara [5] solved the multivariable free-

configuration Wiener problem and demonstrated the use of matrix spectral 

factorization. Hsieh and Leondes [6] first developed a solution for the 

semi-free-configuration Wiener problem which required solving a set of 

iimultaneous algebraic equations avoiding the need to perform spectral 

factorization. However, they did not prove that a solution to their 

equations existed and it was later shown by Davis [7] that their method 

failed in some cases. Bongiorno [8] also solved the semi-free-configu-

ration problem attempted by Hsieh and Leondes using matrix spectral 

factorization. 

All of the previous design methods were unable to accommodate un-

stable plants and required the plant or process being controlled to be 

open-loop stable from the start. Concurrently, several researchers were 

investigating the questions of stability and physical realizability 

associated with the synthesis of m~ltivariable feedback control systems 

[9, 10, ll, 12]. Right-half plane pole-zero cancellations within a feed.;. 

back loop were considered first by Ragazzini and Franklin [13] in their 

early work with sampled data systems. An analogous treatment for con-

tinuous-time systems was presented by Bigelow [14]. Even with these 

investigations, it was still some time later before the questions of 

stability were fully understood and the restrictions removed from fre-

quency-domain synthesis methods. 

The next largest advance in the theory appears to have occurred 

with the study of Weston and Bongiorno [15] who extended the work of 

Newton et al. [4] to the multivariable system. Their investigation 

determined the manner in which load disturbance, measurement noise, and 

plant saturation effects could be incorporated into multivariable 
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design processes. The plant matrix could be rectangular but was subject 

to the condition that the number of plant output did not exceed the 

number of input. The method also required that the plant be open-loop 

stable. 

Several other contfibutlons to the frequency-domarn optimal.control 

theory exist and have been published in various journals [16, 17] and 

texts [18, 19, 20]. However, these developments have been overshadowed 

by more recent ones. Various investigations into other methods which 

are not strictly optimal have also been reported. Examples include the 

inverse Nyquist array method of Rosenbrock [21] and the characteristic 

loci methods of Belletrutti and MacFarlane [22, 23]. Others include the 

pole shifting or modal techniques [24]. The use of these types of meth-

ads usually require a greater amount of design experience and are often 

' 

incorporated into interactive type computer de~ign programs [25]. 

Two complete surveys have been published briefly describing the 

various optimal and nonoptimal design techniques which have been inves-

tigated and reported over the previous years [26, 27]. 

Current Status 

A significant result in optimal frequency-domain synthesis theory 

has recently been published by Youla, Bongiorno, and Jabr [28, 29]. 

This work has contributed greatly to the overall optimal frequency-domain 

design theory and appears to be the most comprehensive frequency-domain 

synthesis technique to date. The questions of stability have been an-

swered as well as other engineering considerations such as steady-state 

error and sensitlvity. The method is general enough to accommodate 

open-loop unstable and/or ~on-minimum ph~se plants with no restrictions 
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on the number of input and output. Both colored and white noise can 

be accommodated as well as plant saturation effects. The method applies 

to both single-input, single-output,and multivariable plants. 

The duality between the time-domain and frequency-domain methods 

for the solution of ~tochastic, multivariable, optimal control problems 

has been demonstrated by MacFarlane [30], Barrett [31], and Shaked [32]. 

Youla et al. [29] also showed the duality between their methods and 

time-domain methods. They further demonstrated the manner in which 

simpler, suboptimal controllers could be found by their method and not 

by the time-domain methods. 

Optimal frequency-domain synthesis requires factorization and man

ipulation of polynomial matrices which present formidable computational 

difficulties. For these reasons, implementation of the methods requires 

the use of automatic computers to carry out the calculations, even if 

the order of the plant is relatively low. Any simplifications of the 

design techniques can be useful in reducing the computational burden. 

A few recent studies have been made which consider simplifications 

to the methods of Youla et al. [29]. Grimble [33] describes a method 

which he reports to be easier to implement than that of Youla et al. 

[29]. The advantages seem to be cancelled by the fact that his method 

requires calculating three separate controllers, two of which are open

loop and are not quite satisfactory in terms of sensitivity. His work, 

however, answers some important questions about inputs consisting of 

both deterministic and stochastic components. Another work by Bongiorno 

[34] demonstrates how the theory in reference [29] can be used in part 

to obtain satisfactory controllers, but the method described is not op

timal and requires intuition on the part of the user. 
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Studies related to the computational aspects of and the numerical 

problems associated with a complete optimal controller synthesis pro

gram do not exist. However, some results have been published describing 

algorithms for computing various parts comprising the overall problem. 

In part, the object of this research was to explore the problems which 

arise when the various computational parts are combined into one com

plete procedure. 

Most of the studies in the 1 iterature related to computations in

volving rational polynomials and rational polynomial matrices fall into 

one of two general categories. The first category is comprised of exact 

computation methods. These methods assume the coefficients of the poly

nomials can be represented as exact rational fractions with the solution 

represented likewise. The second category consists of the methods which 

utilize the more usual floating-point arithmetic. 

Unique to the exact methods is a special purpose programming lan

guage known as REDUCE 2 [35]. REDUCE is a very powerf~l symbolic manip

ulator whose primary function is the algebraic manipulation of tational 

polynomials. The main disadvantage of this programming system is its 

inability to factor polynomials or perform division of polynomials, two 

necessary computations required for spectral factorization, co-prime de

composition, and partial fraction ~xpansion of rational polynomiaj ma

trices. The use of REDUCE 2 is considered in Chapter IV. 

Basic principles of exact polynomial arithmetic are summarized in 

two. texts [36, 37]. Recent contributions are directed toward more spe

cific algorithms, such as those of McClellan [38], Horowitz and Sahni 

[39], and Gentleman and Johnson [40], all of which are concerned with 

the computation of the determinant of polynomial matrices. These 
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algorithms require the coefficients of polynomials to be represented as 

rational integer fractions. Operations are then performed using both 

the numerator and denominator of each coefficient. During the course 

of the operations, the numerator-denominator pair must be constantly 

reduced to its lowest prime form to prevent excessive coefficient 

growth. Coefficient growth, also known as "intermediate expression 

swell" [38], is the greatest difficulty in the use of exact computa

tion methods. 

The use of alternative number systems for exact computations has 

also been investigated by a few authors. Knuth [37] presents a com

plete treatment of modular or residue arithmetic. Addition, subtrac

tion, and multiplication are easily performed using residue arithmetic; 

however, division cannot be performed in any similar manner. 

Rao [41] has proposed the use of finite field transforms using a 

p-adic number system. His approach to exact arithmetic combines the 

best features of the usual p-ary number system and residue arithmetic. 

Some additional work has been done using this type of arithmetic which 

is directly related to the computation of optimal controllers [42, 43]. 

Again, these methods seem hampered by the coefficient growth problem 

mentioned above and, for purposes of this study, by lack of an ex

plicit spectral factorization algorithm. 

Many algorithms dealing with rational polynomial matrices and 

using floating-point arithmetic have been pub! ished. Matrix spectral 

factorization, a critical step in the optimal controller synthesis pro

cess, was first developed into a numerical algorithm by Youla [44]. 

Later, Tuel [45], devised an algorithm for spectral factorization based 

on an iterative procedure used to solve a set of equations similar to 
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steady-state matrix Riccati equations. Anderson, Hitz, and Diem [46] 

also devised a recursive technique that is similar to Tuel 1 s algorithm. 

Davis [47] and Grimble [48] have reported spectral factorization algo

rithms whi.ch are of a non-recursive nature; however, Tuel 1 s algo.rithm 

remains the most popular. 

The inversion of rational polynomial matrices, also a key step in 

controller synthesis, has been addressed by Downs [49], and Mu~ko and 

Zakian [50]. The decomposition of polynomial matrices to Smith form is 

discussed by Pace and Barnett [51, 52]. More basic algorithms pertain

ing to polynomial arithmetic are also available [37, 53, 54]. 

The calculation of the greatest common divisor between two polynom

ials is an extremely important calculation in the controller synthesis 

theory, and efficient algorithms are mandatory. There exist ample stud

ies related to the greatest common divisor problem [55, 56]. However, 

the lack of adequate error analysis, and information pertaining to the 

range of problems which can be successfully handled by the algorithms 

makes the validity and usefulness of the procedures questionable. In 

fact, most of the algorithms which utilize floating-point arithmetic 

were demonstrated with rather trivial examples and lacked adequate er

ror analysis and range of problem information. As a result some of 

these algorithms, when implemented as presented in the literature, are 

not usable in the overall controller synthesis design program. 



CHAPTER 111 

THE CONTROL SYSTEM MODEL 

Optimal Controller Design Problem 

The multivariable controller synthesis theory of Youla, Bongiorno, 

and Jabr [29] was selected for use in this study. The theory is general 

enough to accommodate a large class of both single-input single-output 

and multivariable design problems. Additionally, the computations requir-

ed by the various steps of this design process are representative of those 

required by most of the optimal frequency-domain synthesis theory in exis-

tence. By implementing the selected theory in a digital computer program 

a general problem has been considered. Later development of programs for 

less complex theories (or suboptimal theories) should present few problems. 

The remainder of this section outlines the control system model on 

which this study was based. The theoretical details of the actual synthe-

sis procedure are provided in Appendix A. 

The following notation will be used in the remainder of this thesis. 

The transpose, inverse, trace, and determinate of a matrix A will be de-

T -1 
noted by A , A , TrA, det A, respectively. I represents the n x n i den

n 

tity matrix and 0 represents then xm zero matrix. nm 

The control system configuration considered by Youla, Bongiorno, and 

Jabr [29] and in this research is shown in Figure 1. In the figure, P(s) 

is an n xm matrix of rational transfer functions representing the system 

plant. F{s). is an n xn matrix containing the feedback sensor dynamics. 

12 
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L(s) is optional and represents disturbancci feedforward sensor dynamics. 

Matrix C(s) is the mxn controller to be determined. 

Plant disturbance and measurement noise are include~ by assuming 

that 

y(s) P(s) r(s) + p (s) 
0 

d(s) (3. 1) 

v(s) = F(s) Y (s) + F (s) m(s) (3.2) 
. 0 

z(s) = L(s) d (s) + L (s) Q, ( s) (3,3) 
0 

where P {s), F(s), F (s), L(s), and L (s) are also real rational matrices 
0 0 0 

and are of compatible dimension~ 

In some control system designs, feedback alone will not suffice in 

the suppression of load disturbance and feedforward is advisable. This 

feedforward is accomplished by measuring the disturbance via the sensor 

matrix Lt(s). In many practical problems the choices of physical sensing 

devices Lt(s) and Ft(s) is restricted and dictated by the problem. Low 

power pre-equalizers L (s) and F (s) can and in many cases should be used e e 

to improve stability margin, to assure zero steady-state error, and to in-

corporate delay in the feedback path [29]. 

and 

It is assumed P(s), P0 (s), Lt(s), L (s), F (s), F (s) are known; 
0 t 0 

F(s) = F (s) F (s) 
e t 

L(s) = L (s) L (t). 
e t 

(3.4) 

( 3. 5) 

Additionally, the spectral densities of u(s), d(s), t(s), and m(s) must 

be specified and are denoted by Gu(s), Gd(s), GQ, (s), and Gm(s), respec

tively. 

If yd(s) is the desired closed-loop response, it can be related to 
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the actual set point input signal u.(s) by 
I 
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where Td(s) is an ideal transfer matrix. If Td(s) is embedded within the 

prefilter matrix ~(s) and W(s) is selected in advance, then 

u(s) = W(s) (u.(s) + n(s)) 
I 

(3. 7) 

is the best available approximation of yd(s). The performance measure is 

based on the vector error 

e(s) = u(s) - y(s) (3.8) 

where y(s) is the actual plant output. 

The performance criteria is given as 

1 Ijoo T 
Et= 2n. Tr . < e(s) Qte (-s) > ds 

J - J"" 
(3. 9) 

where Qt is a non-negative definite weighting matrix and <•> denotes en-

semble average. Similarly, if P (s) represents the transfer matrix coup
s 

ling the plant input, r(s), to the plant states which must be protected 

against saturation effects, then 

1 Ijoo T T 
E =-2 . Tr <P (s) r(s) r (-s) P (-s)>ds 
s J . s s 

- J"' 
(3.10) 

is a proven penalty function [4]. Hence, the total cost can be formu-

lated as 

E = E + kE 
t s (3.11) 

where k is a positive adjustable constant used to trade off linear perfor-

mance with system accuracy [29]. 
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The General Control System Model Representation 

As mentioned in the previous section, a user must supply the plant 

matrix, P(s), the feedback matrix, F(s), the feedforward matrix, L(s), 

and the additional transfer function matrices, P (s), F (s), L (s), and 
. . 0 0 0 

P (s) before the synthesis process begins. However, in larger multivari
s 

tj able plants which have a high degree of interconnection and several inner 

control loops the required transfer function matrices may not easily be 

determined. In this section a generalized method for representing the 

plant model, which can be used by a computer program to automatically de-

termine the necessary transfer function matrices, is outlined. 

The procedure is best explained with an example. Figure 2 is the 

block diagram of a plant and measurement system for which a controller is 

to be designed. The blocks labeled Gl, G2, etc. represent various known 

transfer functions within the plant. Blocks Fl, F2, etc. represent sen-

sor transfer functions and all blocks are assumed rational in the Laplace 

variable s. 

The plant input is indicated by r 1 and r2 , disturbance input by d1 

and d2 , and measurement noise input by n1, n2 , and n3. Selected plant in

put and riutput are represe~ted as elements of the vector R . With these 
p 

definitions, the following equation set may be written: 

R ( 1) = Gl r 1 + dl - Rp(2) ( 3. l 2a) 
p 

R (2) = G2 R ( 1) (3. 12b) p p 

R ( 3) p G3 R (2) p (3. 12c) 

R (4) = Fl R (2) + nl (3.12d) p p 

R (5) = F2 R (7) + n2 ( 3. 12e) p p 

R (6) = G4 r2 + d2 (3. 12f) p 



_.,,. ~·· 

d1 

r1 GI + ~ Rp(I) G2 Rp(2) G3 Rp(3) 

1 
Rp(4) + Fl 

+ n1 

Rp(5) 
n2 

~ Rp(S) + F2 + ~ 
+ 

r2 G4 + Rp(6) G5 
Rp(7) 

+ 
d2 

Rp(9) + F3 
+ 

n3 

Figure 2. Example Illustrating the General Model Representation 

-......1 
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R (7) = G5 R ( 6) (3.12g) 
p p • R (8) R (3) + R (7) (3.12h) = 
p p p 

R (9) 
p F3 Rp(8) + n 3 . ( 3. 12 i) 

This equation set represents a set of simultan~ous equation~ which after 

rearranging can be written -in matrix form as 

' A (s) 
p 

R (s) 
p 

= B (s) 
p 

(3.13) 

with the matrix A (s) defined as 
p 

0 0 0 0 0 0 0 

-G2 0 0 0 0 0 0 0 

0 -G3 0 0 0 0 0 0 

0 -Fl 0 0 0 0 0 0 

A (s) = 0 0 0 0 0 -F2 0 0 (3. 14) 
p 

0 0 0 0 0 0 0 0 

0 0 0 0 0 -G5 0 0 

0 0 -1 0 0 0 -1 0 

0 0 0 0 0 0 0 -F3 

and 

i.\ 
~t Gl rl + di 

0 

0 

n 1 
B ( s) 

p n2 ( 3. 15) 

G4 r2 + d2 

0 

0 

n3 



~. 

' 

i 
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Equation (3. 13) describes the plant and feedback measurement system 

completely. It should be noted here that the elements of A (s) and B (s) p . p 

are rational transfer functions. 

is -1 For this example the The next step to determine A ( s) . inverse 
p 

is computed as 

1 
G2+1 G2+1 0 0 0 0 0 0 0 

1 
0 0 0 0 0 0 0 G2+1 G2+1 

G3G2 G3 
0 0 0 0 0 0 G2+1 G2+1 

FlG2 Fl 
0 0 0 0 0 0 

-1 G2+1 (G2+1) 
A (s) = p 

0 0 0 0 G5F2 F2 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 G5 0 0 

G3G2 G3 0 0 G5 0 G2+1 G2+1 

F3G3G2 F3G3 F3 0 0 F3G5 F3 F3 G2+1 G2+1 

(3.16) 

To determine the plant matrix P(s), it is first necessary to desig-

nate the input to be used and the output to be controlled. For now, let 

the plant input be r 1 and r2 and the output to be controlled be Rp(8). 

Setting r 1 equal to one and the remaining input (r2 , d1, d2 , n1, n2 , and 

n3) to zero, the Bp(s) vector becomes 
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(3.17) 

(3. 18) 

the transfer functions from the input r 1 to each of the plant output can 

be obtained. It is not necessary to find the entire R (s) vector since 
p 

only R (8) is desired. Therefore, multiplying the eighth row of A-l (s) 
p p 

by the 8 1 (s) vector, the l x2 plant matrix with only the first element 
p 

determined is 

P(s) = [GlG3G2 
G3+1 . . . J . (3.19) 

Now by setting r 2 to one and r 1 and the other input to zero and repeat

ing the above process,element r 12 (s) of the plant matrix is obtained re

sulting in 

P(s) = [GlG3G2 
G2+1 G4G5] . (3.20) 

In a similar manner of setting each of the various input, distur-

bances, and noises in turn to one and using the appropriate elements of 

R (s), the matrices P (s), F (s), F(s) P(s), F(s) P (s), P (s), L(s) and 
p 0 0 0 s 

L (s) can be obtained. Notice that the F(s) matrix cannot be obtained 
0 

directly by this representation. This is not of concern since only the 
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products F(s) P(s) and F(s) P (s) are actually needed in the synthesis 
0 

calculation. 

Several comments are in order at this point. First, the procedure 

requires the inversion of the rational polynomial matrix, A (s). While 
p 

this may seem somewhat complicated, it should be noted that the matrix 

is generally sparse and there exists a few efficient methods for perform-

ing this inversion (for example, REDUCE 2 [35]). Also, by careful selec-

tion of the output and input, a number of different plant input-output 

configurations can be utilized by the controller design program with a 

single inversion of A (s). Considering Figure 2 again, it may be desired 
p 

to design a controller for the single-loop plant which has r 1 as its in-

put and R (2) as its output. Using the procedure outlined previously and 
p 

the same A-l (s) matrix, the plant is easily obtained as 
p 

P(s) = [ G 1 G2 ] 
G2+1 • (3.21) 

Once implemented in an efficient computer program, this generalized model 

representation allows many designs to be investigated with minimal user 

effort. 

A second comment is that methods similar to this have been used in 

other frequency domain control system analysis programs [57, 58]; how-

ever, its use in a synthesis program as described herein is new. If only 

a state-space representation of the plant is available, it can easily be 

related to the transfer function form of Figure 2 [59). In fact, if a 

state-space representation of the plant is available, then a very general 

A-l (s) matrix is obtained, making it possible to consider all plant input
p 

output configurations. 
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To illustrate the state-space approach, consider the familiar time-

invariant state-space equation set: 

~(t) = A x(t) + B u(t) + D w(t) s s s (3. 22) 

y(t) = C x(t) + E z(t) s s . (3.23) 

where x(t) is the state vector, u(t) is the input vector, y(t) is the 

output vector, w(t) is the disturbance vector, and z(t) is the measure-

ment noise vector. After taking the Laplace transform of Equations 

(3.22) and (3.23), they can be written as 

- l x(s)=(sl-A) (Bu(s)+Dw(s)) s s s 

and 

y(s) = C(sl - A )-l (B u(s) + D w(s)) + E z(s). s s s s 

These equations can now be related to Equation (3.13) by letting 

and 

R (s) = y(s) 
p 

A (s) = (sl - A) 
p s 

B (s) = (B u(s) + D w(s)). 
p s s 

j The remaining calculations are then based on the equation 

R (s) =CA (s)-1 B (s) + E z(s) p p p s 

(3. 24) 

. (3.25) 

(3.26) 

(3.27) 

(3.28) 

(3. 29) 

and the necessary transfer functions are obtained by alternatively set-

ting the various input, disturbances, and noises to one and performing 

the multiplications and additions as before. The only difference is the 

presence of the additional vector, E z(s), representing the measurement s 

noise process. 
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As a final comment, the example of Figure 2 is trivial in that the 

required transfer functions can easily be computed manually. Chapter VI 

contains a more comp! icated example and demonstrates the effectiveness 

of this model representation theory. Although no examples are provided 

showing the use of a disturbance feedforward system, its inclusion in 

the model representation is straightforward. 



CHAPTER IV 

DIGITAL COMPUTATION AND RATIONAL POLYNOMIALS 

During the course of this research, two different schemes for repre-

senting rational polynomial matrices and for performing the related arith-

metic within a computer program were investigated. These investigations 

were carried out with the knowledge that the results would subsequently 

be applied in the development of a computer program for controller syn-

thesis. Since the synthesis program implements the design theory described 

in Appendix B, the resulting scheme had to accommodate an algorithm for 

matrix spectral factorization, canonical decomposition of polynomial ma-

trices, and partial fraction expansion of rational polynomials. 

The schemes investigated are classified as the exact method and the 

floating-point method. The remainder of this chapter describes each of 

the methods separately along with their advantages and disadvantages. 

The final section of this chapter compares each of the methods, and shows 

which method was chosen as the best for the overall synthesis program. 

Appendix B defines the logical structure of the prototype program devel-

oped by this study. The program allowed each of the various representa-

tion and arithmetic schemes presented here to be easily tested within the 

general framework of the overal 1 synthesis program. 

Exact Methods 

Rational Arithmetic 

The use of rational arithmetic provides a means of performing exact 

24 
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computations within a digital computer program. The basic concepts are 

well known and can be found in many texts (see References [36] and [37]). 

Rational arithmetic as applied to polynomials requires that each of 

the coefficients of the polynomial be represented as a rational fraction. 

Consider a general nth-order polynomial 

p(s) ( 4. l) 

To use rational arithmetic each coefficient must be represented as 

q. 
I O,l,2,3, ... ,n ( 4. 2) a. = 

I r. 
I 

where each q. and r. is an integer. 
I I 

Rational fraction representation requires two integer numbers be 

stored in a computer program for each coefficient of each polynomial. 

The number of digits in each of these integer numbers will easily Bxceed 

·the normal integer wordsize of current computers. For example, an IBM/ 

370 can, in a single integer word, accurately represent at most nine 

digits. The use of only nine digit integers by the synthesis program 

would allow only the most trivial of problems to be solved. To illus-

trate, consider a 7th order polynomial whose roots are of magnitude 

greater than 100. The low order coefficient of the polynomial has a mag

nitude of approximately 1007 and requires at least 15 digits to represent 

it accurately. 

The wordsize limitation can be overcome by using several computer 

words to represent a single integer number. The arithmetic must then be 

performed by software since the normal machine arithmetic on most com-

puters operates only the prescribed machine wordsize. 

Polynomial arithmetic is done in the usual manner except addition, 
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subtraction, multiplication, and division of individual coefficients 

must take into account their fractional representation. The addition of 

two coefficients represented as in Equation (4.2) actually requires three 

multiplies, an addition, and a reduction of the resulting fraction tb its 

lowest form. Reduction of a rational fraction to its lowest form means 

dividing out of the numerator and denominator, their greatest common 

divisor (GCD). This prevents the number of digits in the coefficients 

from becoming larger than necessary. Multiplication, division, and sub-

traction of coefficients are performed in a similar way. 

Rational arithmetic is highly desirable for use in the controller 

synthesis program, only for the reason that exact computation is possi-

ble. The exactness of the various computations comprising the synthesis 

procedure directly determines its success. There is, however, one im-

portant drawback to the use of rational arithmetic known as intermediate 

coefficient swell. When rational arithmetic was implemented to perforw. 

the inversion of the example system matrix (A (s)} of Chapter VI, the 
p 

number of digits required to represent some intermediate coefficients 

grew to over 70. Coefficient growth results in greatly increased com-

puter computation times and uses large amounts of memory. 

A more subtle illustration of coefficient growth is provided by the 

spectral factorization of a polynomial. Consider the polynomial 

p(s) = 2 - s2 (4.3) 

which has /2+s and 12-s as its spectral factors. Any attempt to do the 

factorization of Equation (4.3} using rational arithmetic and any conven-

tional factorization algorithm (for example, see Tuel [45]) will fail 

due to the irrational coefficient 12. The number of digits required to 

represent the irrational coefficient is infinite. 
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Alternative Number Systems 

The use of alternative number systems has been proposed recently as 

a means of implementing exact arithmetic within a computer program. Two 

methods were investigated for use in the synthesis program. The first 

method was the use of a residue number system [37] and the second was the 

use of a finite segment p-adic number system [41]. 

The use of either of these methods requires the polynomials to be 

representable as in Equation (4. 1) with rational fraction coefficients. 

The main advantage of using one of these number system is that computer 

memory requirements are reduced. Basic operations, addition, subtraction, 

multiplication, and division, however, must be done by software which in-

creases the execution time of the program. 

Unfortunately, the same problems which hinder the rational arithme-

tic described earlier, specifically coefficient growth during spectral 

factorization, are not eliminated by the use of these alternative number 

systems. In fact, additional problems are introduced, especially by the 

use of the p-adic representation. These additional problems lie in the 

conversion of numbers from their alternate representation back to a read-

able decimal representation. The conversion process is very time consum-

ing, and the need for the synthesis program to output various intermedi-

ate data requires many repeated conversions. 

REDUCE Programming System 

REDUCE [35] offers a very powerful means with which to manipulate 

rational polynomials and rational polynomial matrices. It can perform 

symbolic calculations as well as exact numerical computation. REDUCE 

uses a high-level language similar to Pascal which makes programming 
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relatively easy. The ability to perform symbolic calculations is the 

greatest asset of REDUCE; however, computer execution is slow and large 

amounts of memory are required. Also, REDUCE is not available on many 

computer systems, and its implementation on some systems, such as the 

IBM 360 and 370 computers, is incomplete. 

Since REDUCE uses, basically, the same rational arithmetic described 

earlier to do exact numerical calculations, it suffers from the same co-

efficient growth problem. This problem is easily avoided by the use of 

symbols for the polynomial coefficients. REDUCE may then perform a de-

sired series of calculations and return the answer in terms of the orig-

inal symbols. To obtain actual numerical values for a solution, REDUCE 

can be made to write its answer in the form of a FORTRAN subprogram which, 

when supplied with the numerical values for the original symbols, cah be 

called to calculate numerical values for the solutions. 

REDUCE is well suited as a preprocessor type system for the control-

ler synthesis program. It can be used to solve the generalized model 

representation Equation (3.13) symbolically and write a FORTRAN subrou-

tine which is called by the synthesis program to obtain the various trans-

fer function matrices required (i.e., P{s), P (s), etc.). A REDUCE pro
o 

gram was set up to do this for the pointing and tracking system example 

of Chapter VI (see Figure 9) and it proved to work very well. Total exe-

cution time was approximately two minutes on an IBM 370/168; however, 

since the program must only be executed once for a particular plant, the 

execution time may be acceptable. 

The use of REDUCE to do the entire controller synthesis computation 

was also investigated. The major difficulties encountered were the lack 

of algorithms to do the spectral factorization, partial fraction 
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expansion, and the coprime decompositions of Equation (A~3). The devel-

opment of these algorithms will require the addition of some basic capa-

bilities to REDUCE such as polynomial synthetic division and polynomial 

factoring. If such capabilities become available for REDUCE and suitable 

algorithms develop, it may be possible for REDUCE to solve the entire 

controller design problem symbolically, giving the resulting controller 

1 in terms of the original plant symbols. This would be a very ideal solu

tion due to the fact that when any plant parameter's value is changed, 

the controller is immediately known. Also, if the various weightings of 

the design process were symbolic, the controller would also contain these 

symbols and trade-off studies for various weighting values could be done 

very easily. 

A 1 though REDUCE is very powerful, its use for the contra l ler syn the-

sis process is, at present, limited to the role of a preprocessor for 

plant determination. As its capabilities are expanded and it becomes 

more machine portable, it most likely wi 11 become a major tool for fre-

quency-domain controller design. 

Floating-Point Methods 

The use of finite precision floating-point or real arithmetic is 

;1 most advantageous from the standpoint of availability of algorithms such 

as the spectral factorization algorithm of Tuel [45). Real arithmetic 

methods are also relatively easy to implement in computer programs with 

well-known languages like FORTRAN. However, computations involving poly-

nomials with real coefficients suffer a multitude of numerical problems. 

The numerical problems became evident when direct implementation of 

floating-point arithmetic was attempted in the controller synthesis 
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program. Numerical inaccuracies in the results of one computation were 

propagated and amplified by subsequent computations. The numerical 

errors would eventually become so large that further computation became 

impossible and the program would terminate before any solution was found. 

In the remainder of this section, the use of floating-point arith-

metic for polynomial operations is discussed. Some problems are identi-
~; 
t' f fied and means to overcome the problems are outlined. 
' 

Direct Polynomial Representation 

Direct polynom1al representation means polynomials are represented 

in a computer program by storing the n+l coefficients of an n-order 

polynomial as an ordered set of real numbers. Later in this section an 

alternative representation is discussed in which the roots of polynomi-

als are stored along with a gain value. 

In order to analyze the numerical problems associated with f]oating-

point polynomial computations, it is first necessary to examine the nature 

of the rational polynomials which arise from 1 inear systems. A rational 

transfer function is represented by 

m 
1t (~ + 1 ) 
i = l a. 

K 
I (4.4) 

f g n 
1t (~ + l ) 
j=l s. 

J 

where K is a constant gain and a. and S. represent the zeros and poles 
g I J 

of the system. The a. and S. can be real or complex and if complex they 
I J 

occur as conjugate pairs. 

Both the numerator and denominator, written as polynomials, become 
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2 3 m a + a 1s + a2s + a 3s +. . + a s 
0 m 

b + b1s + b2s b s 3 b s 
n + +. •• + ·o 3 n 

(4.5) 

where 

a == K 
0 g 

(4.6a) 

m 
~ al K L: • g 

.Q,= l a.Q, 
(4.6b) 

m-1 m 
a2 K L: I: -g .Q,=] k=t+l at~ 

(4.6c) 

m-2 m=l m 

a3 = K 2: I: L: g JI,=] k=JI,+] j=k+l aJl,akaj 
(4.6d) 

m-m+l m-m+2 m-m+3 m 
a = I: I: 2: L: n a,Q,aka j a. JI,=] k=JI,+] j=k+l i=m I 

(4.6e) 

and the b o' bl ' b2 . b are defined similarly without the K term. If n g 

la. I > 1 
I 

for i=l,2,3, •.. ,m ( 4. 7) 

then the magnitude of coefficient a can be large compared to coefficient 
0 

a . Consider, for example, the poles S. each having magnitudes of the 
m J 

order of 103 (which is not unreasonable for a very large class of linear 

systems). The magnitude of the low-order coefficient of the denominator 

I is 1 while the magnitude of the high~order coefficient is l0-3n. As the 

order of the polynomial increases, the difference in magnitude between 

the high-order and low-order coefficient increases. Normalization of the 

rational polynomial of Equation (4.5) using the high-order coefficient of 

either the numerator or denominator will not reduce this difference. This 

large magnitude difference is one of the major difficulties in the use of 

finite-precision, floating-point arithmetic. 
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A second major difficulty arises from the finite-precision which com-

puters use for floating-point computation. Precision affects two impor-

tant polynomial calculations directly, synthetic division and the calcula-

tion of the GCD between two polynomials. To illustrate this effect, 

consider the low-order coefficient a from the polynomial 
. . 0 

n 
p 1 ( s) = 1\ (s + a.) 

i = 1 
I 

(4.8) 

which is defined as 

(4.9) 

Assume, for simplicity, that each a. is real and is accurate to two 
I 

significant digits and that the precision of the machine arithmetic is 

assumed to be four significant digits. Calculation of the a coefficient 
0 

is done by successive multiplications with the results of each multipl ica-

tion being chopped to four digits. (Chopping is the worst case applicable 

to finite-precision arithmetic. This is the technique used in a majority 

of computers, although some employ a rounding scheme [60].) If no noise 

is introduced by the multiply, the first product a. 1a.2 will have no error. 

The second product a. 1a. 2a. 3 will be chopped to four digits; hence, the re

sult of the finite-precision multiply becomes 

(4. 10) 

where s 2 is the error introduced into the result by chopping. Proceeding 

with the remaining products the final product becomes 

(4.11) 

and the total error in pn is 
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(4.12) 

The remaining coefficients of the polynomial in Equation (4.8) involve 

the sums of products, and in addition to chopping error introduced by 

multiplication, additional error is added due to the addition process. 

Error due to chopping is introduced into the coefficients of the· 

polynomials as they are computed using Equation (4.6). For some applica-

tions, this error may not represent a problem. However, for optimal con-

troller synthesis it Is a very significant problem, since the success of 

the computations depends on the ability of arithmetic to factor a high-

order polynomial into its lower order factors. 

Returning now to the polynomial formed from Equation (4.8), suppose 

that it is desired to divide out the polynomial 

leaving 

n-1 
= 1f 

i=l 
(s +a.) 

I 
( 4. l 3) 

(4.14) 

The effect of precision error in multiplication can be demonstrated by 

working with only the low-order coefficients of the participating poly-

nomials. Previously, the low-order coefficient of Equation (4.8) was 

determined t6 be p from Equation (4.11). The low-order coefficient of 
n 

Equation (4.13) can be determined in a similar manner as 

(4.15) 

Dividing pn by p~-l and again chopping the result to four significant 

digits, an for Equation (4. 14) becomes 
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ala2a3 ... an - (£2a.4a5 ... an+ E3a5a6 ... an+ En-1) 

a 2 a 3 . . . an - ( £ Z a Sa 6 . . . an + £ 3 a 6 a 7" . . an + E: ~ - 1 ) + £ d 

(4.16) 

where Ed is introduced by chopping after the division operation. 

To i 1 lustrate quantitatively the size of this error, a numerical 

example can be used. Let n=5, and each a. be real and contain two signi-
1 

ficant digits and their numerical values be given as (which the machine 

carries as 4 digits) 

al 11.00 (4. l7a) 

a2 = 22.00 (4. 17b) 

a3 = 68.00 (4.l7c) 

a4 35.00 (4.17d) 

as = 4.20 . (4.l7e) 

The low-order coefficient of Equation (4.8) becomes (with 4 digit arith-

metic) 

PS= 2417.0 x 103 (4. 18) 

which has a total error equal to 2032. The low-order coefficient of Equa-

t i on ( 4 • 1 3) i s 

2 
P4 = 5757.0 x 10 (4. 19) 

with a total error equal to 56. Carrying out the division of Equation 

(4.16) and chopping the result to 4 digits ~S is obtained as 

~5 = 4. 198 (4.20) 

which is in error by 0.002 or 0.05 percent. 

This error may seem somewhat small, so the next example illustrates 

the effect of these errors, coupled with the errors introduced by 
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addition and subtraction, as they are accumulated during the entire poly-

nomial division process. ·The polynomial in Equation (4.8) calculated 

with four digit arithmetic using the values given by Equation (4. 17) is 

pl (s) = 2.417 x 106 + l.009 x io6s + 1.286 x 105s2 

+ 6.592 x 103s 3 + 1.402 x 102s 4 + s5 

and the polynomial given by Equation (4. 13) becomes 

p2 (s) = 5.757xl05 +1.034xl05s+6.021 x103s 2 

+ 1. 36 x l o2s 3 + s 4 • 

(4.21) 

(4.22) 

Performing the division in the following manner (see Equation (4.23) be-

low). the result is 

4. 2 + s _ 900s + 80s2 + 0.2s 3 
P 2 (s) 

(4.24) 

The quotient of Equation {4.24) is in error due to the presence of the 

nonzero remainder term, even though the term 4.2 + s is correct. This 

example illustrates how the errors of multiplication are amplified by 

addition. The effects of finite-precision error become more pronounced 

as the order of the polynomials increases. 

In general, the result of the division will notyieldasexactan an-

i swer as in this example. If p1 from Equation (4.8) is divided by the 

.·:; 
first-order polynomial p3 from Equation (4. 14), ·using again the same 

numerical values, the result becomes 

pl ( s) 
--,.--..- = P3(s) 

2 3 4 2000 5752 + 1033s + 6020s + 136s + s + n-r:::l 
P3\S/ 

(4.25) 

When compared with Equation (4.22), the error becomes evident. While 
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4.2 + 5 

p2 (s)/2.417xl06 + 1.009xl0-6 ~ ~--1.2_8_6~l05~2 -; 6.592x10 3s 3 + 1~40;~1-0ts 4 + s 5 

6 5 2 3 3 2 4 5 -(5.575x10 s + 1 .034x10 s + 6.021xl0 s + l .360xl0 s + s 

2.417xl0°--;-4~3-33~1o's ~~2ox104s2 + 5.710xl02s 3 + 4.2xlO(f~lf 

6 5 4 2 2 3 0 4 -(2.417xl0 + 4.342xl0 s + 2.528xl0 s + 5.712xl0 s + 4.2xl0 s 
2 1 2 -1 3 

- 9.000xlO s - 8.000xlO s - 2.000xlO s 

(4. 23) 

w 
O' 
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these results by themselves mc:w be tolerable, the controller synthesis 

computation requires many of these types of operati~ns. As error-contam-

inated results of one calculation are used in subsequent calculations, 

the errors propagate and become amplified. When the operations are done 

using polynomial matrices, finite-precision arithmetic results in even 

greater errors. 

The third major problem is caused by the manner in which the frac-

tional part of a number is represented with floating-point arithmetic. 

Only radix fractions can be represented exactly (up to the number of 

digits of precision) using floating-point arithmetic. 1 All other frac-

tions must be approximated. This need to approximate certain fractions 

causes additional error in the results of the multiplication and addition 

operations. This additional error is called noise and in general will re-

duce the number of digits of precision actually available on a certain 

machine [60]. 

Root Representation 

In light of the problems associated with finite-precision, floating-

point arithmetic, an alternative method of representing polynomials was 

investigated. Instead of storing the coefficients of the polynomials 

~ directly, the actual roots (complex and real) are stored along with a 

gain value. 

There are several advantages associated with the root representation 

method. First, the magnitudes of roots are smaller than the magnitudes 

1A radix fraction is a fraction which can be expressed as some mul
tiple of J/p0 , where p is the base of the machine arithmetic and a is a 
positive integer. 
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of coefficients. Second, for most engineering problems, roots usually 

need only to be accurate to two or three significant digits requiring 

less precision than coefficients. Third, the multiplication of polynomi-

a.ls is simple and introduces no error since no actual arithmetic is re-

quired. Finally, the GCD between polynomials is easily determined by com-

parison of their roots. 

The main disadvantage of the root representation method are polynomi-

al addition and division. Addition of polynomials in the root representa-

tion requires the evaluation of an equation of the form 

K1 ( s + al ) ( s + a 2) . . . ( s +a j) + K2 ( s + S l ) ( s + B 2) . . ( s + Bk) 

=K3(s+\ 1)(s+\2) ... (s+\i). (4.26) 

Here the K1 and K2 are known gains of the two polynomials to be added and 

the Q. and S. are their known roots. Addition requires the determination 
I I 

of the gain K3 and the unknown roots designated "r The only method which 

could be devised to solve this equation required the use of a factoring 

routine. 

Two options were investigated to do the factoring. The first option 

was to use an analytic root finding routine to determine the roots of the 

function 

( 4. 2 7) 

directly. The other option was to first compute the coefficients of each 

polynomial term, add the two terms, then use a polynomial factoring rou-

tine to determine the desired roots. 

The second option nullified the benefits of the root representation 

method which was developed to avoid the problems associated with 
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representing polynomial coefficients. The first option was difficult be-

cause the number of roots, JI,, in the sum was sometimes difficult to deter-

mine. Both methods were very time consuming since polynomial addition is 

required often during the controller synthesis. 

The algorithms employed to do the factorization produced results of 

insuffici~nt accuracy and the controller computation deteriorated faster 

than with the direct polynomial representation method. Polynomial divi-

sion suffers the same ill effects that addition does because it requires 

a series of polynomial subtracts. Until a suitable method to do polynomi-

al addition and division is found, the root representation method cannot 

be used. Once the addition and division problems are solved, new algo-

rithms for spectral factorization and partial fraction decomposition will 

still have to be developed. 

Summary 

The various techniques out! ined in this chapter were all investigated 

during this research in an effort to determine whi.ch could be appl led to 

the controller synthesis program. It was determined that the exact meth-

ods were extremely reliable; however, the real floating-point methods 

yielded comparable results when the problems mentioned in the previous 

sect ion were accounted for correctly. The exact methods were found to be 

usable for the pre! iminary steps in the synthesis process; such as the 

inversion of the A (s) matrix of the generalized model representation. 
p 

Of the exact methods, the REDUCE programming system proved the most valu-

able. The other exact methods require complex programming to perform the 

arithmetic and large amounts of memory to carry the large number of digits 

in the coefficients which accumulated during computations. 
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Once suitable methods were found for avoiding the problems of float

ing-point arithmetic (i.e., scaling, increased precision, reduced noise) 

it was discovered that for many small scale control systems, floating

point arithmetic could be used to solve the entire synthesis problem. It 

was also possible to solve the.generalized model representation, Equation 

(3. 18), using floating-point, for the smaller control system. The next 

chapter describes the various algorithms employed in the controller syn

thesis. 

During the investigation of the numerical problems associated with 

the use of polynomial arithmetic in the controller synthesis program, 

some major computation trouble areas were identified. First, accurate 

calculation of the GCD of polynomials is of utmost importance to the suc

cess of the overall synthesis program. The GCD calculation using float

ing-point arithmetic and direct polynomial representation, is the most 

numerically difficult computation of all the basic polynomial operations. 

Second, the accuracy to which the more sophisticated computations, such 

as spectral factorization, can be performed directly affects the success 

of the 6verall synthesis. Finally, once any significant error contami

nates the polynomial coefficients during the controller synthesis calcu

lation, it is very rapidly propagated and amplified and the ability of 

t the program to determine a solution controller is greatly impaired. The 

error propagation problem becomes worse when controllers for multivari

able systems are being computed by the program,due to the fact that the 

computations involve rational polynomial matrices instead of simple 

rational polynomials. 



CHAPTER V 

DIGITAL COMPUTER IMPLEMENTATION OF THE 

OPTIMAL CONTROLLER DESIGN THEORY 

Direct polynomial representation and finite-precision, floating-

point arithmetic were selected as best for the controller synthesis pro-

gram. This selection was made because: (1) the available algorithms for 

spectral factorization utilized floating-point arithmetic; (2) methods 

were devised as a result of this research to avoid the major problems 

associated with finite-precision, floating-point arithmetic; (3) the par-

tial fraction expansion algorithm developed by this study required float-

Ing-point arithmetic. Also, the use of direct polynomial representation 

and floating~~oint arithmetic led to a computer program which was less 

complex and more efficient than the program which would have resulted 

had any of the exact theory been implemented. Direct polynomial repre-

sentation was chosen instead of root representation due to the lack of 

an accurate polynomial addition routine for the latter. 

This chapter describes the algorithms used in the prototype synthe-

sis program and the details related to floating-point arithmetic. The 

information presented here is one of the major contributions of this work. 

Basic Operations 

Polynomial Arithmetic 

In order to avoid the problems associated with the use of finite-

41 
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precision floating-point arithmetic, three important features were imple-

mented in the synthesis program. First, the precision of the entire pro-

gram was increased to the maximum allowed by IBM/370 FORTRAN. This was 

accomplished with the aid of the extended precision option of the IBM 

FORTRAN Level H compiler and resulted in reliable precision to 34 signi-

ficant digits [61]. Second, sealing was implemented to avoid large mag

i' 
~ nitude differences between the coefficients of various polynomials. 

Finally, an algorithm was developed and implemented for the addition and 

iubtraction of individual numbers which employed rounding to prevent pro-

pagation of calculation noise. 

The first feature increased the precision of every polynomial co-

efficient to 34 significant digits and also increased the precision of 

machine level arithmetic to 34 significant digits. The second feature, 

sealing, was used to reduce magnitude difference between the coefficients 

of a polynomial. Scaling, sometimes called frequency sealing, has the 

effect of dividing all the roots of a polynomial by a constant such that 

their magnitude approaches one. Scaling can be applied to polynomials 

by 

s 1 = rs ( 5. 1 ) 

where r is a ·scaling constant. The value of r is chosen to obtain mini-

mal range in the coefficient magnitudes. As an example, the polynomial 

of Equation (4.21) can be scaled by letting 

s 1 = 10s. (5.2) 

Equation (4.21) now becomes 

pl (s 1 ) = 2.417x106 + 1.009x107s + 1.286x107s 2 

'+ 6.592xl06s 3 + l.402xl06s4 + 1 .Ox105s 5 (5. 3) 



and the magnitude difference between coefficients is greatly reduced. 

This technique works well with rational polynomials since normalization 

of either the numerator or denominator polynomial will further reduce 

the magnitude of all of the coefficients. Properly adjusted coeffi~ient 

magnitudes help prevent exponent overflow and underflow errors during 

subsequent computations. 

Unfortunately, sealing does not help the precision problem, and will 
' 
" usually make it worse. As the rational polynomials are scaled and nor-

malized, the magnitudes of the coefficients tend to become less than 

unity, which results in additional calculation noise and therefore reduc-

ed precision. As the order of the polynomials increases, the precision 

required for .accurate representation may exceed the hardware capabi 1 ity 

of the computer. The only solution to insufficient precision is an in-

crease in precision. Hence, large optimal control problems cannot be 

solved unless the computer floating-point precision is increased or soft-

ware type multiple-precision arithmetic [62] is employed. 

The basic polynomial operations were implemented by algorithms which 

are similar to those of Reference [54] except for the GCD operation. The 

GCD algorithm was a version of the one proposed by Matthew [57]. The 

third feature was included in all of the polynomial arithmetic routines. 

f This feature proved to be a major contribution to the success of the 

overall synthesis program and it is discussed here in detail. 

Whenever the basic polynomial routines require add.ition or subtrac-

tion of two numbers, a special routine is called to perform and monitor 

the required operation. Even though every number in the program is stored 

as an extended precision word (34 significant digits), the algorithm de-

veloped considers only part of the total number of digits valid during 
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addition or subtraction. The remaining digits are considered to be cal

culation noise. The addition and subtraction rout~ne first adds or sub

tracts the numbers normally, then tests the results. The test is per

formed in such a way that the effect is. the same as if the numbers were 

first rounded to some preset number of valid digits before they are added 

or subtracted. If. the test determines the result should be zero, the 

routine sets the result to identically zero. 

The number of digits to be considered significant in addition or 

subtraction is set at the start of program execution and can be adjusted 

at various points during the controller computation. This value is ini

tially set to a value which prevents calculation noise from being propa

gated and provides for the greatest number of significant digits for all 

polynomial coefficients. A value between 26 and 28 was found to be the 

maximum which could be used with FORTRAN extended precision arithmetic. 

The ability to alter the number of digits at various points within the 

synthesis program allowed the precision of the numbers to be progressive

ly reduced to account for errors introduced by the various computation 

steps of the program. 

For purposes of this research, addition and subtraction were also 

monitored to determine whether the magnitudes of the two numbers were 

compatible. For example, if the number of val id digits is set to 30, 

numbers whose magnitudes differ by more than 1029 were considered incom

patible. The addition and subtraction routine merely reported the occur

rence of this condition. This monitoring was done to verify correct 

operation of the synthesis program and did not always indicate an error 

condition. 

Both the above feature and the increased machine precision contributed 
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significantly to improved performance of all the basic polynomial opera

tions. Sealing, in general, does not have any significant effect on 

arithmetic operations except to increase calculation noise slightly and 

reduc.e the possibility of exponent underflow or overflow. The operations 

of polynomial division and especially the GCD calculation were most sen

sitive to precision. 

GCD Calculation 

Accurate calculation of the GCD between two polynomials is one of 

the most critical calculations of the entire synthesis process. It is 

used to keep the numerator and denominator of all rational polynomials 

prime. It is critical because the validity of the synthesis theory re

quires that the rational polynomial elements of certain matrices have no 

common factors between numerator/denominator pairs. The matrices defined 

by Equations (A. 12) and (A. 13) in Appendix A are examples of these criti

cal matrices. 

Since the GCD calculation is critical, the algorithm which was em

ployed by the synthesis program is outlined here. The algorithm is given 

the coefficients of two polynomials for which the GCD is to be computed. 

The following steps are then performed: 

1. The zero valued roots of both polynomials are removed by in

specting the low-order coefficients. The number of zero roots common to 

both polynomials is retained. 

2. Each polynomial is normalized such that its low-order coeffi

cient is unity. 

3. The polynomial of lowest order is subtracted from the other. 



The subtraction is done by calling the polynomial subtraction subroutine 

which employs the special addition and subtraction routine. 

4. The results of the subtraction is then checked for the zero 

polynomial. If the result is the zero polynomial, either of the two 

polynomials is the correct GCD. Th~ GCD is made monit by high-order nor-

malization.and the number of zero roots retained in step 1 are inserted. 

If the result is not the zero polynomial, the calculation proceeds. 

5. The zero root is removed from the polynomial obtained in step 3. 

6. At this point there are three polynomials. The polynomial hav-

ing the highest order is discarded and the calculation repeats from step 

2 using the two remaining polynomials. 

The theory which supports this algorithm is outlined in Reference [57]. 

The following example demonstrates the effect of noise in the above 

algorithm and the effect of precision. The two polynomials are those 

used for the example in Reference [57] and are defined as 

pl (s) = {s 3 + 3s2 + 9s - 4)(s5 + s4 - 3s2 + 2s + 2) 

8 7 6 5 4 3 2 
= s + 4s + 12s + 2s - lls - 19s + 36s 

+ 10s - 8 (5.4) 

and 

p2 (s) = (s 3 + 3s2 + 9s - 4) (s 2 - 10s + 5) 

= s5 - 7s 4 - 16s3 - 79s2 + 85s - 20. (5. 5) 

The calculation of the GCD of p1 (s) and p2 (s) was carried out using IBM 

double precision (16 digits) arithmetic and the algorithm described 

above. Notice that each coefficient has two significant digits. By set-

ting a special variable (named NDIG) to the value of 2, the polynomial 



~·. 

47 

subtraction routine is instructed to consider only two digits in each co-

efficient of the polynomials being subtracted to be significant. With 

NDIG set equal to 2, the algorithm calculated the GCD of pl (s) and p2 (s) 

to be 1.0 (no common factors).· When NDIG was set to values between 3 

and 12 inclusive, the GCD was obtained to be (with all actual 16 digits) 

GCD(pl (s), p2 (s)) = 1.000000000000000 s 3 

+ 3.000000000000006 s 2 

+ 9.000000000000019 s 

- 3.999999999999942 (5.6) 

When NDIG was set to any number greater than 12, the GCD was again calcu-

lated to be 1.0. This result implies that at least three significant 

digits are required to compute the correct result and that noise prevents 

the result from being obtained with more than 12 significant digits. 

Rational Polynomial Matrix Arithmetic 

Rational polynomial matrices can be represented in one of two ways. 

Let 

P (s) = 

pl 1 (s) 

P21(s) 

PlJI, (s) 

Pu, (s) 

(5,7) 

where each pkt(s) is a rational polynomial with coefficients of the form 

of Equation (4.2). If the least common multiple (LCM) of all the denomi-

nator polynomials of P(s) is calculated and labeled g(s), then by 
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multiplying each element of P(s) by g(s), the matrix can also be repre-

sented in the form 

pl l (s) Pj 2 (s) Pj g, (s) 

Pz 1 ( s) Ph (s) Pzg,(s) 

P(s) 1 (5. 8) = 9GT 

pk 1 ( s) Pk2(s) pkt (s) 

where each pkt (s) is polynomial. 

Through experience during the course of this research, the represen-

tation of Equation (5.8) was found to be the most suitable. The reason 

this representation was selected is that this form is generally required 

by the special algorithms (such as canonical decomposition, matrix inver-

sion, and spectral factorization) of the synthesis program. The matrix 

form of Equation (5.8) is easier to manipulate within a computer program, 

and matrix arithmetic requires fewer polynomial operations than the alter-

native representation of Equation (5.7). The disadvantage of the repre-

sentation of Equation (5.8) is that polynomials pkt(s) and g(s) will 

generally be of higher order and the magnitude of their coefficients will 

be larger than the polynomials in Equation (5,7). 

Special Matrix Operations 

Rational Polynomial Matrix Inversion 

Given a polynomial matrix Pj(s) and its scalar polynomial divisor, 

the inverse of matrix P1 (s), defined as 
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P1(s) = gfsr [Pj(s)], (5.9) 

is calculated in the following manner. By using a procedure similar to 

the one described by Gantmacher [63], P](s) is reduced to a diagonal matrix by 

a series of row and column operations. The result of all row operations 

is represented as an elementary matrix U(s) and the column operations as 

J an elementary matrix V(s). The operation is represented by the equation 

U(s) P] (s) V(s) = Pd. (s). 1ag 

The inverse of P1 (s) is defined as 

-1 
p 1 (s) 

Using Equation (5.5), the inverse of P] (s) is 

-1 
= V(s) Pd. (s) U(s). 1ag 

(5. 10) 

( 5. 11) 

(5. 12) 

Once U(s), V(s), and Pd. (s) are obtained, it is a simple matter of 1ag 

inv~rting Pd. (s) and carrying out the required multiplications. The 1ag 

final result is then put into the required rational polynomial matrix 

form. 

The main problem experienced with this algorithm was the very high-

order polynomials during the diagonal ization process. When the order of 

these polynomials increased to the point where their coefficients could 

no longer be accurately represented, the algorithm failed. 

Coprime Decomposition of Rational 

Polynomial Matrices 

A coprime decomposition algorithm is required to do the operations 
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shown as Equations (A.3) and (A.4) in Appendix A. The algorithm developed 

follows the theory of Jabr [64] which is outlined here. 

By a suitable set of elementary row and column operations, the ra-

tional polynomial matrix F(s) P(~) can be reduced to its Smith-McMill-ian 

form (44] and becomes 1 

where 

F(S). P(s) = U(s) (Qc (s) $ On-k,m-k) V(s) 

rl ( s) 
c 

n i ( s) 
= diag 

d 1 ( s) ' . . . ' 

(5.13) 

(5. 14) 

The subscript k equals the normal rank of then xm matrix F(s) P(s). Each 

numerator polynomial n.(s) is relatively prime to its denominator, d.(s); 
I I 

n.(s) divides n. 1 (s) without remainder and d .. l (s) divides d. (s) without 
I 1+ I+ I 

remainder. 

Thi~ reduct1on is accomplished algorithmically using the method de-

scribed by Gantmacher [63] for reduction of matrices to canonical form. 

The F(s) P(s) matrix is assumed to be in the form 

F(s) P(s) = g-fsr [P] (s)] (5.15) 

where P] (s) is a polynomial matrix and g(s) is the LCM of all the denomi

! nator polynomials of F(s) P(s). P] (s) is reduced to canonical form result-

i ng in 

(5. 16) 

where U(s) and V(s) are elementary polynomial matrices representing the 

1The symbol (9 implies 11 direct matrix sum. 11 
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row and column operations used for the red~ction. The matrix Q' (s) is of 
c 

the form 

( 5. 1 7) 

Now by calculating the GCD between n; (s) and g(s) and dividing 

n ! (s) 
n. ( s) I 1,2, ... , k = GCD(nj (s), g (sJ) I 

.(5.18) 

and 

d. (s) = g(s) 
= 1,2, ... , k 

I GCD(n; (s), g(s)) (5. 19) 

are obtained. Since each n. (s) is relatively prime to its mated. (s), 
. I I 

there exist two polynomials p.(s) and q.(s), q.(s) =I- 0, such that 
I I I 

p.(s) n.(s} + q.(s) d.(s) = l; i = l, 2, ... , k. 
I I I I 

(5.20) 

Each p. (s} and q.(s) are obtained algorithmically by solving k separate 
I I 

sets of simultaneous equations. A suitable equation solver is employed 

which includes an iterative solution improver for accuracy and can return 

the number of significant digits available in the solution. 

Each set of simultaneous equations is set up in the fo 1 I ow i n g manner. 

Let the order of n. ( s) be j and the order of d. (s) be JI, and 
I I 

i i i 2 a'. sj n. (s) = a + a 1s + a2s + . . . + (5.21) 
I 0 J 

and 

d. ( s) bi i i 2 i .Q, 
(5.22) = + bl s + b2s + . . . + b.Q, s 

I 0 

Assume the order of p. (s) and q. (s) to be .Q, - 1 and j - 1, respectively, and 
I I 



p. (s) 
i i i 2 i -1 

= c 0 + c I s + c2 s + . . . + c - l s 
I 

and 

The matrix equation 

i 
a 

0 

i 
a. 

J 

0 

0 

0 . . . 

i 
a2 

i 
a. 

J 

0 

(Q,+ j-2) x (Q,-1) 

0 

i 
a 

0 

i 
al 

i 
a2 

0 0 

bi bi 
2 0 

bi 
!l 

bi 
l 

0 bi 
!l 

bi 
2 

0 

0 

(Q,+j-2)x{j-1) 

i 
c 

0 

i 
CQ,-1 

i 
e 

0 

i 
el 

i 
e2 
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(5. 23) 

(5.24) 

0 

0 

0 

= .. 

(5.25) 

rs the desired simultaneous equation set which must be solved to obtain 

i i i i i i i Now defining c o' cl ' . .. ,cQ,-1' e o' el ' e2 ' . . . ' e j -1 . 

n = diag [n 1(s), n2 (s), . .,nk(s)] (5.26) 

d diag [d 1 (s), d2 (s),. . ' dk ( s) ] (5.27) 

p = diag [pl(s), p2 (s),. .,pk(s)] (5.28) 
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(5.29) 

the desired coprime factors are obtained as 

A(s) (d 
-1 

= EB 'n-k) U(s) (5.30) 

B(s) = (n EB 0n-k m-k) V(s) , (5.31) 

A1 ( s) = V - l ( s) ( d EB I m-k) ( 5. 32) 

Bl ( s) = U(s)(n EB 0 ) n-k,m-k (5. 33) 

X(s) = U(s} (q EB I n-k) (5. 34) 

and 

-1 
Y ( s) = V ( s) ( p EB 0 m-k , n _ k) . (5.35) 

Note that since U(s) and V(s) are elementary matrices, their inverses are 

easily generated during the canonical reduction phase of the algorithm. 

Matrix Spectral Factorization 

The two spectral factorizations in Equations (A.12) and (A.13) are 

computed by the synthesis program using the algorithm developed by Tuel 

[45]. While spectral factorizations are crucial to the success of the 

synthesis program, they are difficult to compute numerically .. If the com-

puted factors do not contain sufficient accuracy, the synthesis program 

may fail to compute any valid controller. 

Matrix spectral factorization is outlined briefly here and full de-

tails of Tuel 's algorithm can be obtained by consulting Reference [45]. 

Given an r x r spectral matrix, G1 (s), whose elements consist of rational 



polynomials, and which has the following properties: 2 

1. 

2. 

3. 

4. 

G1 (s) is real, i.e., G1(s) = G1(s); 

T G1 (-s) = G1 (s); 

G1 (s) is of normal rank r alinOst everywhere; 

G1 (jw) is positive semidefinite for every finite w; 

54 

I then the spectral factor, H(s), can be computed such that 
:,, 

T . 
G1 (s) = H {-s) H(s) • (5.36) 

Since Tuel 's algorithm can factor only polynomial elements and G1 (s) con

tains rational elements, G(s) is written alternatively as 

(5. 37) 

where Gj (s) and g(s) are, respectively, matrix and scalar polynomials. 

This form is compatible with the rational polynomial matrix representa-

tion of the synthesis program. The spectral factor, h(s), is computed 

for g ( s) and H ' ( s) for G l ( s) such that 

g(s) = h ( -s) h ( s) ( 5. 38) 

T H' (-s) H' (s) (5.39) 

~ The matrix spectral factor H(s) becomes 
~ 

1 
H(s) = ~ H' (s). (5.40) 

Briefly stated, the spectral factorization G' (s) or g(s) is perform-

ed by first mapping the continuous plane onto the dhcrete plane, solving 

2 The overbar denotes complex conjugation. 
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the discrete factorization problem using an iterative procedure, then map-

ping the solution back to the continuous plane. Particular attention was 

paid to accuracy when this algorithm was incorporated into the synthesis 

program. The effects of arithmetic precision and frequency scaling were 

studied and the following conclusions were obtained: 

1. The accuracy of the continuous plane to discrete plane mapping 

' 
~ depends heavily on the precision of the arithmetic emp.loyed. 

2. The convergence of the iterative equations used to db the dis-

crete factorization is directly affected by the range of coefficient mag-

nitudes in the polynomials of G' (s) or in g(s). Pre! iminary frequency 

scaling of G' (s) or g(s) can result in significantly faster convergence. 

The effect of scaling is easily demonstrated with an example. The 

left-hand side of Equation (A. 13) (from Appendix A) which results for 

Example 1 of Chapter VI is 

A(s) G(s) AT(-s) = (5.76x108 - 7.32x108s2 + l.5325xJ08s4 

1.567708xJ06s6 + J.306xJ0 3s8 

10 2 
- I • Os ) I ( 1 00. -s ) • (5.40) 

The numerator polynomial in this equation was factored using the spectral 

factorization algorithm of Tuel without scaling. The factorization re-

quired 460 iterations to converge to an answer accurate to 16 significant 

digits. The denominator required only a single iteration to converge due 

to the fact that it is only a second-order polynomial. The matrix Q(s) 

from Equation (A. 13) was obtained as 

Q(s) = (2.4xl04 

+ 3.970886644124943xl04s 

+ l.759987654268718xl04s2 



+ 2.0l4812383065610xl03s3 

+ 7.304536101718718726x10ls4 

+ l . os5) I ( l . Ox 10 l + l . Os) . 
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(5.41) 

Using a scale factor of 10.0 and the change of variable defined by Equa~ 

tion (5. l), the spectral function in Equation (5.40) becomes 

A(s) G(s) AT(-s) = (5.76xl08 - ].32xlo 10s 2 + l.5325xl0 12s 4 

- 1.567708xl0 12s6 + l.306xl0 11 s8 

- l .Ox!OlOs 10)/(100.0 - 100.0s) . (5.42) 

Notice that the range of coefficient magnitudes is approximately half 

what it is in Equation (5.40). The spectral factorization of the numera-

tor of Equation (5.42) required only 96 iterations to converge with the 

same 16 significant digit accuracy. The unscaled solution for this case 

is identical to Equation (5.41). 

The effect of scaling was as dramatic for matrix factorization prob-

lems as it was for the above scalar problem. Example 3 of Chapter VI 

demonstrates the performance of the factorization problem for the matrix 

case. 

The factorization of Equation (A.13) requires a slightly modified 

approach. Repeated here, Equation (A. 13) is 

T T A(s) G(s) A (-s) = n(s) n (-s). (5.43) 

The spectral factorization algorithm, however, computes the factor n 1 (s) 

such that 

T T 
A(s) G(s) A (-s) = ~ 1 (-s) n 1 (s) (5.44) 

which is not the desired result. In order to obtain the correct factor, 

the synthesis program first computes an intermediate matrix as 
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T T P1 (s) = [A(s) G(s) A (-s)] (5.45) 

and the factorization is carried out using P1(s). The factorization 

yields the ~atrix Q11 (s) such that 

. . . T T T . 
P1 (s) = [A(s) G(s) A (-s)] = n11 (-s) n11 (s) . (5. 46) 

Transposing each matrix in Equation (5.46) yields 

T T T P1 (s) = A(s) G(s) A (s) = Q11 (s) n11 (-s) (5.47) 

Comparing Equation (5.47) with Equation (5.43), the desired factor is 

T 
Q ( S) = Q II ( S) (5.48) 

Once the factorization of P1 (s) is complete, the synthesis program must 

then transpose the resulting matrix factor to obtain the correct factor. 

Partial Fraction Expansi-0n of 

Rational Polynomial Matrices 

The required partial fraction expansions are shown in Equation 

(A. 19). The general problem can be stated as fol lows. Let P1 (s) be a 

matrix of rational polynomials. Then the equation 

(5.49) 

represents the partial fraction expansion of P1 (s), where {P1 (s)} 00 is the 

part associated with the pole at infinity; {P 1 (s)}_ is the part which has 

all of its poles in Real(s) ~ O; and {P 1 (s)}+ is the part which has all 

of its poles in Real(s) < 0. 

An algorithm was developed to do the partial fraction expansion 

which is based on the solution of a set of simultaneous equations. A 
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rational polynomial matrix is represented by the synthesis program in the 

form 

(5.50) 

where P] (s) and g(s) are, respectively, matrix and scalar polynomials. 

The algorithm expands each .element of P1 (s) separately; therefore, it is 

necessary for the algorithm to compute each rational polynomial element 

using g(s) and Pl (s). This is done in the following manner. Let P ~ . ( s) 
I J 

be a polynomial element of P](s). 

i divide to obtain 

Compute the GCD of g(s) and P! .(s) and 
lj 

p ! . ( s) 
n(s) = I J 

GCD(P!. (s), g(s)) 
I J 

(5. 51 ) 

and 

d(s) = g(s) 
GCD(P ! . (s), g(s)) 

I J 
(5. 52) 

which yields the desired rational polynomial element defined as n(s)/d(s). 

This insures n(s) and d(s) to be relatively prime and the number of simul-

taneously equations to be solved minimal. 

The denominator polynomial d(s) must be split into two polynomials, 

one containing the roots which lie in Real(s) ~ 0, and one containing the 

roots which lie in Real (s) < 0. These are designated d+(s) and d-(s), re-

spectively. The algorithm must now compute a(s), b(s), and c(s) such that 

n(s) = c(s) + 
d1ST 

b(s) 

d-(s) 
(5. 53) 

The above equation can now be rearranged into a form similar to Equation 

(5.20) and stated as 

4 
' 
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(5.54) 

The algorithm assumes the order of polynomial a(s) to be one less than 

+ the order of d (s), the order of b(s) to be one less than the order of 

d-(s), and the order of c(s) to be the difference between the order of 

n(s) and d(s). ·If the order of n(s) is less than the order of d(s), then 

c(s) is assumed to be the zero polynomial. 

Matrices are set up representing the simultaneous equation set in a 

manner similar to those of Equation (5.25). The difference is that the 

vector of unknowns contain the coefficients of a(s), b(s), and c(s); the 

solution vector contains the known coefficients of n(s); and the constant 

coefficient matrix is formed using the coefficients of d+(s) and d-(s). 

The equation set is then solved using a high accuracy linear equation 

solver and the coefficients of the unknown polynomials are obtained. 

The above process is repeated for each element of P1 (s). As the ex

pansion of each element is computed, the desired part of the expansion is 

placed into a matrix. The algorithm then returns the solution matrix in 

the standard matrix representation form similar to Equation (5.50). 

The main problem experienced using this algorithm was the inaccura-

cies in splitting each d(s) into its corresponding right- and left-hand 

s-plane parts. The splitting was done by first factoring d(s) and then 

~ forming the coefficients of d+(s) and d {s) with the resulting roots. In 

general, the partial fraction expansion algorithm was the major source of 

t inaccuracy within the synthesis program and further research is needed to 

improve the algorithm. 



CHAPTER VI 

EXAMPLES 

Three separate examples are presented in this chapter to illustrate 

the performance and application of the controller synthesis program which 

has been developed.· The first examplel from Youla, Bongiorno, and Jabr 

[29], is a single-input single-output controller design problem. Their 

design problem is done here to demonstrate the performance of the program 

developed by this research. Controllers computed by the program are com-

pared with the controller obtained through hand calculation by Youla et 

al. [29]. 

The second example shows an application of the synthesis program to 

a real, nontrivial controller design problem. The program is used to de-

sign two separate single-input single-output controllers for a stabil iza-

tion loop of an airborne laser pointing and tracking system. The two 

controllers are computed for different values of the saturation weighting 

parameter k (see Equation (3. 11)). The performance of both is then com-

pared with the performance of the stabilization system with its original 

controll~r. · The results of this example illustrate the usefulness of the 

frequency-domain controller synthesis program. 

The third example is an extension of the application in example two 

to the multivariable case. Although the current version of the synthesis 

program was unable to completely determine a controller, the example is 

useful in identifying specific problems in the numerical procedure. 

60 
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Identification of ihese problems areas is useful for establishing future 

research directions. 

Example One 

The example presented here is from the work of Youla, Bongiorno, and 

Jabr [29], and a complete treatment of the problem can be found in the 

thesis of Jabr [64]. The results computed by Jabr were used to verify 

the controller computed by the synthesis program. The results presented 

here comprise the first complete machine computation of a controller uti-

lizing optimal frequency-domain synthesis theory. 

A block diagram of the plant used for this example is shown in 

Figure 3. The plant matrix is defined as 

P(s) s - 1 
= s (s - 2) ( 6. I ) 

and is both unstable and non-minimum phase. The feedback sensor consists 

of a pure delay element, 

F(s) = -0. ls 
e 

which cannot be accommodated as is by the design theory. 

(6.2) 

To make the feedback sensor compatible the pure delay must be approx-

imated by a suitable rational transfer function. For this example a Pade 

approximation is used and the feedback transfer function becomes 

F (s) = F (s) F (s) = 
e t 

2 
1200 - 60s + s 

2 
1200 + 60s + s 

There is no feedforward in this example; therefore, 

(6.3) 

(6.4) 
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Other related transfer functions are defined as 

p (s) = 
0 

(6. 5) 

F (s) = 
0 

(6.6) 

The F(s) P(s) transfer function has a pole at the origin; therefore, the 

closed-loop system can track a step input with zero steady error and the 

1 input spectra 1 ·density becomes 

-1 
Gu (s) = 2 

s 
(6. 7) 

In this example, the input itself must be protected from saturation; 

therefore, 

p (s) = 
s 

(6. 8) 

and 

(6.9) 

The disturbance spectral density and the spectral density of the measure-

ment noise are 

(6. 10) 

and 

G (s) = 1 , 
m 

( 6. 1 l) 

respectively. 

The controller obtained by Jabr [63] for this system was defined as 

C (s) (6.12) 
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where 

k = 67.228808 ( 6. l 3a) 
0 

Cl l = 0.0148746 ( 6. l 3b) 

C't2 = -9.9999638 (6.13c) 

Cl 3 = -30. + jl7.320508 ( 6. l 3d) 

131 = 2. 41327103 (f>. 1 3e) 

13 2 = -9.9806404 (6.l3f) 

13 3 = -33.654632 (6.13g) 

13 4 = -18. 0573239 + jl4.991623 (6. I 3h) 

The validity of this controller was verified by Jabr, making it a suit

able reference which the program generated controllers may be compared 

against. The model in this example is not complicated enough to warrant 

use of the generalized model preparation program. 

The synthesis program was executed several times under identical 

conditions except that the number of significant digits (variable NDIG) 

was changed for each run. NDIG was initially set to 26 in all of the 

runs. NDIG was then reduced after the spectral factorization to a dif

ferent value for each run. This allowed an investigation of the impor

tance of precision to the controller computation. 

Table I shows the roots of the resulting controllers as they were 

computed for various values of NDIG. The roots were obtained directly 

from the numerator and denominator polynomials of the controller computed 

by the program. The table shows that for some values of NDIG the numera

tor and denominator of the controller contain identical roots. This is 

due to the fact that, with NDIG significant digits, the synthesis program 

could not reduce the controller polynomials any further. 

t 
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TABLE 

CONTROLLERS COMPUTED FOR EX~MPLE ONE 

NDIG Gain Numerator Roots Denominator Roots 

24 67.2288 -0.244256 -0.244256 
0.0148746 2. 41327 

-2.04703 -2.04703 
2.00000 2.00000 
2.00000 2.00000 

' 
2.00000 2.00000 

-9.99996 -9.98064 ~ 

-10.0000 -10.0000 
-30.0000 ±jl7.3205 -33.6546 
-30.0000 ±j17.3205 -30.0000 ±jJ7.3205 
-30.0000 ±j17.J205 -30.0000 ±j17.3205 

-18.0573 ±j14.9916 
20 67.2288 0.0148746 -0.244256 

5.04536 -2.04703 
-9,99996 7. 91363xl0- I 9 

-10.0000 
15 67.2288 -0.244256 -0.2244256 

0.0148746 2.41327 
-2.04703 -2.04703 
2.00000 2.00000 

-9.99996 -9.98064 
-1.00000 -1.00000 

-30.0000 ±jl7.3205 -33.6546 
-18.0573 ±jl4.9916 

10 67.2288 -0.244256 -0.244256 
-2.04703 -2.04703 
0.0148746 2. 41327 

-9.9999?> -9,98054 
-30.0000 ±jl7.J205 -33.?>546 

-18.0473 ±jl4.9916 

7 67.2288 0.0 6. 39717xl0-3 
0.0 6.50306xl0-3 

-0.247569 
3.05433xl0-3 

-0.247569 
3.05433x10-3 

-0.0148741 2. 4 J1103 
-2.04681 -2.04681 
2.00000 1.99912 

-10.0000 -9.98069 
-30.0000 ±j-17.3205 -33.6546 

-18.0573 ±j14.9916 

I 6 67.2288 o.o 
-0.244338 -0.244338 
0.0148743 2.41308 

" -2.04698 -2.04698 
2.00000 2.00017 

-10.0000 -4.42325xlo-6 
-30.0000 ±jl].3205 -9.98069 

-33.6546 
-18.0573 ±jl4.9916 

5 67.2288 0.0149125 3.87469 
-IT.2113 

4 67.2288 0.0149125 3.87469 
-11.2113 

Note: Underlined values are the roots of the actual optimal controller. 
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These results show that for this particular example the controller 

can be reliably computed with no less than 10 significant digits and no 

more than 15 significant digits. As NDIG is increased upward past 20 

digits, the order of the polynomials in the controller grows, since the 

noise in the coefficients prevents further reduction of the polynomials. 

This can become a serious problem if the order of the controller becomes 

too large for it to be analyzed. 

Example Two 

This example illustrates the application of the frequency-domain 

synthesis program to a real, non-trivial system. The system under con-

sideration here is a rate stabilized control loop of an airborne pointing 

and tracking system and is shown in block diagram form in Figure 4. Table 

I I contains the definitions of the various blocks shown on the figure. 

Function 

RIG 

J 

DM 

Vl 

Gl 

B 

K 

C(s) 

TABLE 11 

DEFINITION OF FUNCTIONS FOR THE CONTROL LOOP OF FIGURE 4 

Definition 

l/(s (1 + s/1667) (1 + l .2s/3769.9 + (s/3769.9) 2) 

268.5 

2.24 

0.02(1 +s/1847)/((l +s/25)(1 +s/3562)(1 +s/12485) 
(1 + s/9425 + (3/9425)2)) 

1666.67/(l + s/1920) 

18000 

921000 

443000(s/35+1) (s/75.4+l)/(((s+1) (s/2557 + l) (s/697 + l) 
(s/2055+1)(1 +l.2s/1094 + (s/1094)2)) 
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This system is in actual existence and utilizes the controller form 

shown in Table I I. The plant is the inner-azimuth gimbal of four gimbal, 

two degrees of freedom pointing system. The control loop formed around 

the blocks marked Vl and Gl is a pressure controlled hydraulic drive sys-

tern for the gimbal. Constant J is the moment of inertia in the gimbal, 

OM is the effective moment arm of the hydraulic actuator, B is the effec-

t·ive damping in the gimbal mounting, and K is the spring force~ The loop 

marked 11 SPR I NG CANCEL 1 ' is used to cance 1 the effects of the spring and 

causes the rate loop to approximate a Type 1 system. The spring cancel 

is not 100 percent and the rate loop is not a true Type 1. The block 

diagram shows the gimbal inertia to be modeled with one angular degree 

of freedom. The model used for comparisons in this chapter actually had 

a two-degree of freedom gimbal structure with a resonance near 110 Hz. 

The rate loop is driven with a rate command at the point marked 11 

which is generated by a tracker system (not shown). A rate integrating 

gyro (block RIG) serves as the main sensor element. Motion disturbance 

in the outer gimbal system enters the stabilization loop at the point 

marked o1• The primary concern of this study is the aircraft yaw vibra

tion which is transmitted through the outer gimbal to the inner gimbal. 

Figure 5 shows the power spectral density (PSD) of the actual rate dis

i turbance entering the loop at point o1• The approximation is obtained 

from the function 

l.OxlO-l2 ((w/0.4) 2 + l((w/320+1) 2 + 1) 
. 2 2 

((w/56.) +l) 
(6. 14) 

and serves as the spectral density functions used in the controller syn-

thesis described later. 
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The performance of the stabilization loop of Figure 4 is shown in 

Figure 6, which is the rate error response at point R1 (see Figure 4) to 

·the PSD function G0(w) (Equation (6. 14)) applied at point o1. Figures 7 

and 8 show the open and closed loop response of the stabilization system. 

The objective of this example was to design a new controller, C(s); 

which will optimally improve the performance of. the system shown. Figure 

9 shows a block diagram of the plant considered for the design process. 

The associated definitions of the blocks in the figure are 11sted 1n Table 

I I I. The plant is the same as the plant in Figure 4, except that the var-

ious transfer functions have been simplified as shown in Table Ill. These 

simplifications were necessary as an aid to reducing the numerical diffi-

cul ties during the controller synthesis process. Because of these changes 

the synthesis process will produce a somewhat suboptimal controller de-

sign. The integrator at the plant input is used to account for the rate 

integrating gyro which must be considered as part of the plant. The rate 

integrating gyro cannot be included in the feedback measurement system 

because the synthesis theory al lows only stable measurement systems. The 

effects of spring have been removed so that a true Type 1 plant is possi-

bl e. 

The general model representation is now formulated for this plant. 

Even though the plant may not warrant the general model representation, 

its use makes calculation of the necessary transfer functions easy. The 

model equations can now be written as described in Chapter I I I: 

R (I ) 
p 

R (2) = 
p 

r 1 J 
--. - R (s) Gl 
s DM p 

R ( 1 ) V l - s R ( 4) OM 
p p 

( 6. 1 5a) 

(6. 15b) 
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TABLE 111 

D~FINITIONS OF FUNCTIONS ·FO~ THE PLANT OF FIGURE 9 

Function Definition 

J 260.0 

DM 2.2 

Vl 0.02 (1 + s/1800)/((1 + s/25) (1 + s/3500)) 

Gl 1666. 6 7 I ( 1 + s/1900) 

B 18000.0 

K 0.0 (spring cancelled) 
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R (3) R (2) Gl OM - R (4) 
(s B + K) ( 6. l 5c) = p p s J p . s J 

R (4) = Rp(3)/s - d1/s ( 6. 1 5d) 
p 

R (5) = Rp(3) + n1 (6. l 5e) p 

Thus, the A (s) and B (s) matrices are defined as p p 

Gl 0 0 0 

-Vl 0 s OM 0 

0 
-Gl DM (s B + K) 

0 A (s) = s J s J (6. 16) p 

0 ff 0 
s 

0 0 -1 0 

r 1 J 

s OM 

0 

B (s) = 0 (6. 17) 
p 

-d /s 
1 

n 1 

A FORTRAN version of the general model representation preprocessor 

program (see Appendix B) was used to compute the transfer functions for 

the synthesis program. Since this is a single-input single-output sys-

tern, the plant input is designated to the model preprocessor as r 1 and 

the plant output was designated as R (3). The measured output was desig-
p 

nated as Rp(5), the disturbance input as d1, and the measurement noise 

as n1. The preprocessor used the algorithm described in Chapter V to 

compute the inverse A (s) matrix. Since the FORTRAN preprocessor was 
p 

used, the A (s) and B (s) matrices had to be defined with the actual p p 
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numerical values for the polynomial coefficients. The program used a 

frequency scaling value of 1000.0 and easily computed the required trans-

fer functions as (shown scaled): 

P{s) = (5~7xl0- 6 + 3.1667xl0-6s)/(0.0°+ 3.9651xl0- 1s 

+ 6. 7530xl0°s 2 + 1.0569x101s 3 +5.592xl0°s 4 + s5) 

F{s) P(s) = P(s) 

L(s) = L (s) = 0 
0 

' -1 -1 -1 2 
P {s) = (3.9651xl0 +8.8205x10 s +4.2510xl0 s 

0 

F (s) = 
0 

P (s) = 
0 

+ 6.6667xl0-2s 3)/(3.9651x10-l +6.7531xl0°s 

+ 1.0569xl0 1s 2 +5.5917x10°s 3 +s 4) 

F(s) P (s) = P (s) • 
0 0 

. 

(6.18) 

( 6. 19) 

(6.20) 

(6. 21) 

(6.22) 

(6.23) 

(6.24) 

The P (s) matrix was set to unity by the preprocessor program, but s 

the saturation point to be protected was at the output of the gyro inte-

grator. P (s) was set manually to be 
s 

P (s) = 1.0xl0-3/s 
s (6.25) 

Since the effects of the spring K were removed, the system was capa-

ble of tracking a step type input with zero steady-state error; there-

fore, G (s) was defined as 
u 

-7 2 G (s) = -1.0xlO /s . 
u 

(6.26) 

The spectral density Gd(s) was defined to be.the function shown in Equation 
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(6. 14) and when scaled is defined as 

l -18 -11 2 -10 4 = (9.8345x10 - 6.1466x10 s + 6.0025xl0 s )/ 

(9.8345xl0-6 - 6.272xl0- 3s 2 +I .Os 4) . (6.27) 

The spectral density of the measurement noise was assumed as 

G (s) = 1.0xl0-3 
m 

(6.28) '; 

i 
I, 
·7 and 

G£(s) = 0.0. (6.29) 

Matrix Qt, the transient weighting matrix, was set as 

(6.30) 

and for the first design to be tested, the saturat1on weighting constant, 

k, was set as 

k = 1.0 • (6.31) 

The synthesis program was set to initially use 24 significant digits 

and then to use 10 significant digits after the spectral factorization 

steps. The program then computed the controller to be 

C(s) 
K(s/a 1 + l) 

= [s/8 1 + l) \ 
i 

(6. 32) 

ii 
where 

K = 597.24 (6.33a) 

-2 
Cl l = 6.5lxl0 (6.33b) 

s1 
-2 = 7. 59xl 0 (6. 33c) 
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·~ 

The roots shown are the scaled roots obtai~ed from the synthesis program 

and the unscaled roots are obtained by multiplying these values by 1.000. 

Figures 10 and 11 show the open and closed loop response of the orig-
, 

inal, unsimplified stabilization system resulting from the use of the com-

puted controller. Figure 12 shows the PSD of the rate error due to the 

disturbance. Comparison of figure 12 with Figure 6 shows that the use of 

the new controller resulted in significant reduction of system perfor-

mance. 

The synthesis process was repeated with a saturation weighting value, 

-8 
k, set equal to l.OxlO • When the synthesis program was executed for 

this run, the number of significant digits had to be reduced to seven 

after the spectral factorization steps. The program computed the new 

controller to be (unscaled) 

where 

K"" 18571.2 

a 1 • 65.4 

a.2 '"" 1258. 0 

a. 3 ti 2134.o + j533.3 

81 .. 3800 .o 

s2 "" 1806. 0 

s3 • 1788.0 + j2634.o 

(6.34) 

(6.3Sa) 

(6.35b) 

(6.35c) 

(6.35d) 

(6.35e) 

(6.35f) 

(6.35g) 

It was observed that the numerator roots a. 2 and a 3 were fairly 

close to the denominator roots e2 and s3, so the alternate controller 
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where 

C (s) 
K(s/o: 1 +1) = _......,... __ _ 
(s/S 1 + 1) 

K = 18571. 2 

0:1 = 65.3 

81 = 1806.0 

82 

(6,36) 

(6.37a) 

(6.37b) 

(6.37c) 

was analyzed along with the controller of Equation (6,34). The result of 

the analysis showed very little difference in performance, so the results 

of the analysis for the simpler, suboptimal controller is presented here. 

Figures 13 and 14 show the open loop and closed loop responses of 

the original stabilization system resulting from the use of the control-

ler defined in Equation (6.36). When the closed-loop response of Figure 

14 is compared with the original closed-loop response of Figure 8, it can 

be seen that the bandwidth ha~ been increased and the resonance peak 

around 10 Hz has been significantly reduced. 

Figure 15 shows the PSD of the rate error due to the disturbance. 

Comparison of Figure 15 with Figure 6 shows significant improvement in 

the ability of the stabilization system to reject the disturbance enter-

ing the loop. 

An interesting measure of performance is illustrated in the compari-

sons of Figure 16. In this figure the cumulative RMS power in the rate 

error of the stabilization system for the different controllers is plot-

ted. The cumulative RMS levels at 1000 Hz are representative of the 

total RMS in the rate error resulting from the disturbance. The objec-

tive of the optimal controller design was the minimization of the mean-

square rate error; therefore, the curves in Figure 16 provide an 



v 

-.c 
c -w 
c 
::::> 
!:: 
-' a.. 
~ 
<( 

60 90 

40 0 

20 -90 
... -........ .... ,~ 

....... , 
0 \ I\ -180 

•• 1 \ 

\ 
\ -20 \ -270 

\ 
\ 
~ 
~ -360 -40 ~ 
~ 
~ 

. ~ 

-60 -450 

-80 -540 
1 10 100 1000 

FREQUENCY (Hz) 

Figure 13. Open Loop Response of the Original 
Stabilization System With N~w 
Controller and k = 1.0 x 10-t1 

83 

-Cf) 
w 
w 
a: 
C) 
w 
c -w 
Cf) 
<( 
:c 
a.. 



84 

1 i 
40 ....... 0 ,, 

... , 
' 20 ' ', -90 ,__. -- ', en 

.c 0 -180 w 
c i\ w - a: 
w ', CJ 
c -20 -270 w 
:::> \ c 
!:: \ -' w ...J ,. \ 
Q.. -40 

' 
-360 en 

::1E < 
< :c 

~ 
Q. 

-60 -450 

-80 -540. 
1 10 100 1000 

FREQUENCY (Hz) 

Figure 14. Closed Loop Response of the Original 
Stabilization System With New 
Controller and k = 1.0 x 10-8 

ij j 
.. 



' -.c 
0 -0 
Cf) 
a. 
a: 
0 
a: 
a: 
w 
w 
I-
<( 
a: 

-90 

-100 

-110 

-120 

i 
f 

85 

- 130-1--~~~~--10~~~~----1~0-0 __________ 1 __ 000 

Figure 15. 

FREQUENCY (Hz) 

PSD of Rate Error in Original Stabil iz~tion System 
With New Controller and k = 1.0 x 10-t.5 

,, ., 

t ,, 



10.0 

¥ 

:~ 
l 

l 7.5 

I{) 

9 
x 
a:: 
L.LJ 
3 5.0 
0 
a. 

::E 
:J 
(.) 

2.5 

I 
I 

/ , , 
0.0 

I 

Figure 16. 

-·-/ , 
_____ ./ 

--- -
f 

I -I -::--I z,, 
Full , ,,.. 
Controller '4'~ 
k = 1.0 r 

I 
I 

I I 
f ' 

' ~ I 
11 

I' 
I .JI 

,. I 

' / I r / . 

I ~r· 
' 

I , 
Reduced I 

I/ 
, 

Contra l ler I /, 
k = 1.0 )( 10-8 I I I /,I 

I // Full 
/ Controller 

... Y k;:: 1.0 )( 10-8 

10. 100 IOOO 
FREQUENCY (Hz} 

Comparison of the Cumulative RMS Power 
in the Rate Error of the Original 
Systems for Various Control le rs 

86 

' ·, 
;i 
t~ 
W, .. 
~· 

~ 



87 

indication of how well that objective was achieved. It is also interest

ing to note that the use of the new controllers (with k = l.Oxlo-8) tends 

to reduce the power levels in the lower frequency region. 

It should be noted that the analytic disturbance PSD function (Equa-

tion (6.14)) is flat after JOO Hz. This causes the rate error RMS levels 

of Figure 16 to be high; however, if the PSD function were made to de-

crease after JOO Hz, the levels would be lower. The flat PSD function 

was used for the synthesis because actual PSD data were uncertain after 

JOO Hz. 

Finally, the open and closed loop responses of the simplified sta-

bil ization system with the controller of Equation (5.56) are shown in 

Figures 17 and 18, respectively. Comparison of these figures with Fig-

ures 14 and 15 shows the use of the simplified model for the controller 

designs was reasonable. 

Example Three 

In this example, the design of two-input two-output controller for 

the plant shown in Figure 19 was attempted. The function definitions for 

the various blocks shown in the figure are the same as those for Figure 9 

and are listed in Table Ill. In this example, the simplified plant of 

example two has been expanded to include an ideal tracker. The integrat-

or representing the rate integrating gyro has been removed from the front 

of the gimbal drive system and its output was designated as a plant out-

put. 

The general model representation was used to compute the transfer 

function matrices for the synthesis program. The plant input was desig-

nated as r 1 and r2 , the plant output was designated as R (5) and R (6). p p . 
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The disturbance input was again designated to be d1. No noise input was 

considered in this example. The FORTRAN version of the model preproces-

sor was used and the polynomials were frequency scaled using a scale fac-

tor of 100.0. The necessary transfer function matrices were computed as: 

P(s) 1 
= -p ,...,I (.-s~) ( 6. 38) 

where 

p I (S) = Q.O + 3.9651x103s + 6. 7530xl0 3s 2 + 1.0569x103s3 

' 1 4 5 
+ 5. 591667x10 s + 1 . Os (6.39a) 

pl 1 (s) 
' l 1 . 1 2 3.9651x10 + 6. 7530x10 s + 1.0569x10 s 

-1 3 -2 4 + 5.591667x10 s + 1.0xlO s (6.39b) 

P12 (s) 
-1 ' -2 

(6.39c) = -5.7x10 .-3.1667x10 s 

P22(s) -pl2 (s) (6.39d) 

P21 (s) = 0 (6.39f) 

F(s) P(s) = P(s) (6. 40) 

L(s) = L (s) = 0 (6. 41) 
0 

1 [ qll (s) ql2(s)l 
p (s) = p I (5) (6.42) 

0 
q21 (s) q22(s) 

and 



t 
q 11 (s) 

1 0 -1 2 = -3.9651x10 - 8.8205x10 s - 4.2510x10 s 

- 6.6667xl0- 3s 3 

·q12 (s) = 0 

q2l(s) = 0 

q22(s) = -ql l (s) 

F (s) = 0 
0 

F(s) P (s) = P (s) 
0 0 

p (s} = [l OJ . 
s 0 1 

The spectral density matrix for the input was defined as 

G (s) 
u 

0 ' ,0 

0 
-l.Oxl0-7 

2 s 
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(6. 43b) 

(6.43b) 

(6.43c) 

(6.43d) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

The entries in this matrix indicated that the output of the gyro is re-

quired to stay close to zero and that the pointing angle is required to 

~ follow a step type input. The same disturbance function used for exam-

ple two was used in this example; therefore, 

Gd(s) = (9.8345xlo- 14 - 6.1466xl0-9s 2 + 6.0025xlO-lOs 4); 

(9.8345xl0- 2 - 6.2]2xl0- 1s 2 + l .Os4) 

The remaining spectral density matrices were zero. 

The transient weight matrix was assumed to be 

(6.48) 
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Qt=[~ ~] (6.49) 

and the saturation weighting constant, k = 1, was assumed. 

The prototype synthesis program was not able to compute the optimal 

controller due to convergence problems encountered at the matrix spec-

tral factorization steps. The underlying reasons are best illustrated 

by examining the numerical values of one of the matrices which had to be 

factored. The matrix from Equation (A.12) was computed by the program 

to be 

T T T 
A1 (-s) (P (-s)QtP(s) - kP 3 (-s)Ps (s))A1 (s) = 

rll(s) 

r 21 (s) 

rl2 (s) 

r22(s) 

(6.50) 

where the .polynomial elements are (5 significant digits are shown but 

the computations were done with 24 significant digits): 

3 8 2 11 4 
r 11 (s) = l .393xl0 - 4.2196xl0 s + 2.192lxl0 s 

116 98 710 
- 5. l 772x 10 s + 7. 6912x 10 s - 4. 3172x 10 s 

5 1 2 2 J-11 . - 2 1 6 
+ 1.2033x10 s - l .6969xl0 s. + 9.9723x10 s (6.5la) 

-4 -2 4 2 
r 12 (s) = 3.684Sxl0 - l .0315xl0 s - 1.8375x10 s 

+ 5.0004xl05s 3 - 8.4279xl03s 4 - l .1804xl06s 5 

+ 1. 1925x105s 6 + 8. 5845xl03s 7 - 1. 1878x103s 8 

-1 9 0 1 0 -2 11 
- 7.9867x10 s + 3.255lx10 s - 5.4130xl0 s 

- 3.2150xl0-3s 12 +8.4791x10-Ss 13 (6.5lb) 



r2l (s) = rl2 (-s) 

r22 (s) = 2.3423xl0-8 - l.l356x10°s 2 +2.68J5xl0°s4 

- 2.666lxl0-2s6 + 7.3018xl0-\8 

-8 10 - ].2094xl0 s . 
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(6.5lc) 

(6.5ld) 

Based on the investigations of spectral factorization and frequency seal-

ing, it is believed that the large range in the magnitudes of the coeffi-

cients within each polynomial was the major reason that the spectral fac-

torization failed. The values shown in Equation (6.51) resulted from the 

scale factor of 100.0 mentioned earlier. Other attempts used scale 

factors of 1000.0 and 10000.0 with no success. 

The failure of the synthesis program in this example does not mean 

that smaller order designs will fail. There is every indication that the 

program can succeed for smaller, well~conditioned problems. 



CHAPTER VI I 

SUMMARY AND RECOMMENDATIONS 

I 

Summary i 

Computer implementation of frequency-domain controller design the-

ory has been accomplished by this research. The underlying causes of 

many of the numerical problems associated with the manipulation of ra-

tional polynomial matrices have been identified and arithmetic and al-

gorithmic improvements demonstrated. 

The system size which can be successfully treated with the synthe-

sis program is 1 imited but significantly greater than that which can be 

conveniently treated manually. The capability of the synthesis program 

and theory was demonstrated in the second example of Chapter VI. It is 

believed that the success attained by the program in that example will 

provide the stimulus needed for continued research in this area. 

Investigations made during the course of this research indicate 

that the best arithmetic for use in frequency-domain controller design 

programs is the floating-point arithme~ic. As the prototype program 

developed by this study evolves toward a production oriented program, 

the use of symbolic systems such as REDUCE combined with floating-point 

type systems may prove to be beneficial. The precision of floating-

point arithmetic is the main factor 1 imiting the size of systems which 

can be treated by the synthesis program. The computation of controllers 

for large multivariable systems requires arithmetic precision which 
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exceeds the hard capabilities of all modern computers. The use of 

software to increase the precision of the arithmetic is an alternative 

which needs to be investigated. 

Contributions 

The main contributions of this research are summarized as follows: 

1. A structure for frequency-domain controller design programs has. 

been defined and a prototype program has been developed around this 

structure. 

2. A generalized model representation has been developed and dem-

onstrated. 

3. Direct polynomial representation and floating-point computation 

have been determined best for the controller synthesis program. This 

choice was made based upon investigations of the various exact computa-

tion methods and the various floating-point computation methods~ 

4. Precision, calculation noise, .and large magnitude differences 

in polynomial coefficients were identified as the underlying causes of 

numerical difficulties associated with the use of floating-point arith-

metic in the synthesis program. Methods were devised which can be used 

to overcome these difficulties. 

5. It was shown that frequency-scaling significantly improved the 

performance of the synthesis program and especially the spectral factor-

ization. 

6. The machine computation of controllers for a real, non-trivial 

plant has been demonstrated for the first time. 

]. The performance of the rate stabilization loop of an airborne 
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laser pointing and tracking system has been improved by the use of the 

synthesis program. 

Recommendations 

It is recommended that research be continued as follows: 

l. lnvesti~ate the m~nner in which coefficient inaccuracies affect 

the roots of polynomials and develop techniques which can be utilized to 

avoid increasing the precision of arithmetic within frequency-domain syn-

thesis programs. 

2. Investigate the computer implementation of suboptimal frequency-

domain synthesis theory using the methods developed by this research. 

3, Determine the usefulness of high~precision software arithmetic 

to synthesis programs. 

4. Continue the investigation of the root representation method 

with emphasis on improving the addition operation. Develop algorithms 

to perform spectral facto~ization using the root representation method. 
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APPENDIX A 

OPTIMAL CONTROLLER DESIGN THEORY 

This appendix summarizes the main results of Youla, Bongiorno, and 

Jabr [29] and serves only as a reference. Conditions for the existence 

of an optimal controller C(s) are presented along with sufficient assump-

tions on the model, as indicated in Figure 1. The procedure for determin-

ing the optimal controller is also outlined. The definitions, theorems, 

and lemmas presented here were obtained directly from Reference [29], and 

the proofs have been omitted but may be found in the References. 

Definitions, Conditions, and Assumptions 

Definition 1 

The plant P(s) and feedback compensator F(s) form an admissible pair 

if each is individually free of unstable hidden modes and 1 

(A. 1) 

(The manic polynomials ~+(s) and ~-(s) absorb all the zeros of ~(s) in 

1Let the distinct finite poles of A(s) be denoted by s. and their 
I associated McMillian degrees by o .. The manic polynomial 

I 

u o. 
~A(s) = l (s-s.) I 

i=l I 

is the characteristic den9minator of A(s). C+ denotes the closed right
half of the s-plane and C denotes the open left-hand of the s-plane. 
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+ -C and C , respectively, and, up to a multiplicative constant, w(s) = 
+ -

1jJ (s) w (s).) 

Lemma I 

If the plant P(s), the feedback compensator F(s), and the C(s) are 

free of unstable'hidden modes, the closed-loop of Figure 1 is asymptoti-

h cally stable if and only if 

(A. 2) 

is a strict Hurwitz polynomial. 

Lemma 2 

There exists a controller stabilizing the given plant and feedback 

compensator in the closed-loop configuration of Figure I if and only if 

the pair P(s), F(s) is admissible. 

Lemma 3 

Let P(s), F(s) form an admissible pair. Let 

-1 -1 F(s) P(s) =A (s) B(s) = B1 (s) A1 (s) (A. 3) 

where the pairs A{s), B{s) and B1{s), A1 (s) form any left-right coprime 

polynomial decomposition of F(s) P(s). Select polynomial matrices X(s) 

and Y(s) such that 

A(s) X(s) + B(s) Y{s) = I . 
n 

(A.4) 

Then, (1) the closed-loop of Figure 1 is asymptotically stable if and 

only if 

R(s) = (Y(s) +At (s) K(s)) A{s), (A.5) 
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where K(s) is any mxn real rational matrix analytic in C+ and which 

satisfies the constraint 

de t ( X ( s ) - B l ( s ) K ( s ) ) -:I 0 . (A. 6) 

(2) The stabilizing controller associated with a particular choice of .ad-

missible k(s) possesses the transfer matrix 

. . -1 
C(s) ,,;, (Y(s) + A1 (s) K(s)) (X(s) - B1 (s) K(s)) . (A. 7) 

If C(s) is defined in this manner, <ji(s) from Equation (A.2) will be strict 

Hurwitz. 

Assumption 1 

The plant and feedback compensator form an admissible pair, the feed-

forward compensator is asymptotically stable, and the transfer matrices 

P(s), F(s), and L(s) are prescribed in advance. 

Assumption 2 

P (s), F (s), L (s), Q(s) = PT(-s) P (s), and spectral densities 
0 0 0 s s 

If P (s), F (s), or L (s) repre-
o 0 0 

sents a physical block, they must be stable. However, if they are merely 

part of the paper modeling, it is possible to relax stability requirement. 

'j The input signal, load disturbance, and measurement noises are stochasti-

cally independent. 

Assumption 3 

= F (s) G (s) FT(-s) + L (s) Gn(s) LT(-s). o m o o ~ · o (A. 8) 
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T 
P s ( s) , F ( s ) , ( F ( s ) - I n ) P ( s ) , A2 ( s) Gu ( s) A2 ( - s ) , 

T T 
A2 (-s), L(s) Gd(s) L (-s), and Gm,\', (s) are ana-

lytic on the finite s=jw axis. 

Assumption 4. 

Let k be any positive constant, 

(A. 9) 

and 

P (s) = F(s) P (s) + L(s) . 
d 0 

(A. l 0) 

T T T The matrices A(s) G{s) A (-s) and A1 (-s) (P (-s) P(s) + kQ(s)) A1 (s) are 

. 
nonsingular on the finite s=jw axis: 

Assumption 5 

The data satisfy the order relations2 

G (s) ~ 0(1/s2 } 
u 

-2 i 
Gd{s)~s I 

P(s) = O(sv) 

O(P) + O(F) :: µ 

::: o ( l I ~2) 

2A(s) s: O(sr) means no entry in A(s) grows faster than sr as s-+ 00 • 

The order of A{s) equals r, i.e., A(s) = O(sr) if (1) A(s) s: O(sr), and 
(2) at least one entry grows exactly 1 ike sr. For A(s) square, A(s) ~ 
srl abbreviates 

limit s-r A(s) =A (A constant nonsingular matrix) 
00 co 

s-+ co 

A(s) ~ srl implies A(s) = O(sr) but not conversely. 
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and 

T 2 
(P (-s) P(s) + kQ(s)) G(s):::::s I , 

m 
(A. 11 f) 

where < 1 µ ~ max ( v - 1 , -1 ) . 

The Optimal Controller 

It can be shown that under Assumptions 1 through 5 of the previous 

section, the optimal K(s), which satisfies Equation (A.6) and makes E 

finite, can be found in the following manner. 

Theorem 1 

1. Construct two square real rational matrices /\.(s), ~(s) analytic 

I · h h · · ·1 n C+ such that 3 toget1er wit t e1 r inverses 

~ ~ ~ 

A;· ( P "Qt P - k Q) Al = A" /\. (A. 12) 

and 

(A. 13) 

2. Let 

(A. 14) 

and choose any two real polynomial matrices X(s), Y{s) such that 

A(s) X(s) + B(s) Y(s) = I 
n 

(A. 15) 

3. The transfer matrix of the optimal controller is given by 

(A. 16) 

3The indeterminate swill be dropped from subsequent representations 
where there will be no confusion. A*(s) = AT(-s), A-*(s) = (A*(s))-1. 
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where 4 

(A.17) 

or alternatively 

C = H (A-la - FPH )-l 
0 0 ' 

(A. 18) 

(A. 19) 

The (nonhidden) poles of the optimally compensated loop are precisely the 

zeros of the strict Hurwitz polynomial 

e(s) = 
ijJ;(s) 1/J~(s) 

1/J FP ( s) 
(A.20) 

plus the finite poles of K(s), each counted according to its McMillian de-

gree. 

Coro 11 a ry 1 

Suppose F(s) P(s) is analytic in C+. Then 

C = H (Q - FPH )-l (A.21) 
o r - o 

where 

(A.22) 

(A. 23) (P 
..,,, 

kQ) * Ql + = A !\. 
r r 

(A.24) 
i'::. 

G = Q Q 
r I" 

41n the partial fraction expansion {·} + {·} + {•} of any rational 
matrix, {•} is the part associated with th~ pole ~t infinity and { } • +' 
{•}_the pa~ts associated with all the finite poles inc- and c+, respec-
tively. 

-1 
'l 

l 

~ 
·~: 
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(A.25) 

and J\(s) , f;1(s) are square, real rational matrices analytic together 
r r 

with their inverses inc+. 

Corollary 2 

Let 

and 

then the 

If P(s) 

-·k - ,,, 
a = J\ r J\ 

b J\ 
-1 

Al y f;1 

c = {a - b} 

~-

p = Q (G + P Gdp") 
t u 0 0 

- a a + c c 

minimum cost E min is given by 

joo 
2nj E • = Tr I p(s)ds. 

min . 
- J"' 

F(s) is analytic in c+ (stable case), 

.. r.. ..1~ 

p = Q (G + P GdP") - {a}" {a} . 
t u 0 0 + + 

Coro 11 a ry 3 

(A.26) 

(A.27) 

(A. 28) 

(A.29) 

(A.30) 

then 

(A.31) 

+ Let P(s) be square and analytic tog~ther with its inverse in C , let 

F = I (unity feedback), let k = 0 (no saturation constraint), and assume 
_,_ 

feedforward compensation is not employed. Then, if G and Q (G +P Gdpd") 
t u 0 

are diagonal matrices, the optimal controller C(s) satisfies the noninter-

action condition 

P(s) C(s) diagonal matrix. (A. 32) 



APPENDIX B 

PROTOTYPE PROGRAM STRUCTURE 

An important achievement resulting from this study was the develop

ment of a prototype computer program for frequency-do~ain synthesis of 

optimal controllers. This appendix describes the logical structure of 

the program and its features. The program was coded in FORTRAN on an 

IBM 370 computer; however, the information presented here can be used to 

develop similar programs in FORTRAK on different machines. 

The process of controller design consists of three parts. Part one 

is the model preparation; part two is the actual synthesis; and part 

three is the analysis. Model preparation consists of the process of 

generating the necessary data for the synthesis using the generalized 

model representation theory presented in Chapter I I I. The definition of 

synthesis and analysis is obvious. Rather than include all three parts 

in one large program, it was more efficient to develop each part into a 

separate program. The reason for this was that the model preparation 

needed only to be performed one time, while the synthesis program would 

usually be run several times for trade-off studies. The analysis was a 

separate program due mainly to the fact that a program already existed 

for frequency-domain analysis [58]. This program had analysis capabil

ities far beyond any that could be efficiently included directly in the 

synthesis program. 

Figure 20 shows the data flow through the entire controller design 

process. For the model preparation program, two options were made avail-

1 l 0 
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able. The first option consisted of a REDUCE program to which. symbolic 

information describing the matrices A (s) and B (s) (see Chapter I I I) 
p p 

was input. Additional information was also input which described the 

configuration of the plant, feedback meas~rement system, etc •. The 

REDUCE program inverted the A (s) matrix and performed the necessary · 
p . 

matrix multiplies to produce the P(s), F(s)P(s), P (s), F (s), P (s), 
0 0 S· 

L(s), and L (s) plant matrices. These matrices were written in the form 
. 0 

of a FORTRAN subroutine (Subroutine MODEL) by REDUCE which could be cal-

led by the synthesis program to obtain the required transfer function 

matrices. The synthesis program required a data file which contained 

the numerical values for the symbols used to originally define the model. 

Each matrix was defined in the proper form. for the synthesis program, 

that is, each matrix consisted of a matrix of polynomials and an asso-

elated scalar divisor polynomial. 

It was also determined that the REDUCE program could be made to 

calculate additional intermediate matrices needed for the synthesis pro-

gram. Referring to Appendix A, these additional matrices would be the 

G(s) matrix of Equation (A.9), the Pd(s) matrix of Equation (A.10), the 

PT(-s)QtP(s) + kQ(s) matrix of Equatiun (A.12), and the PT(s)QtGu{s) + 

P0 (s)Gd(s)PTd(-s) part of matrix r(s) in Equation (A.14). In order for 

the REDUCE program to generate these matrices, the spectral density ma-

trices Gu(s), Gd(s), Gm(s), and G1 (s) had to be defined along with the 

A (s) and B (s) matrices. 
p p 

The second option shown in Figure 20 for the model preparation pre-

processor was the use of a FORTRAN-based program. The plant model was 

coded in the form of a subroutine, which was called by the model prep-

aration program to define the A (s) and B (s) matrices. Instead of the 
p p 
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polynomials being represented symbolically, the FORTRAN program required 

that they be represented with actual numeric values for their coeffi-

cients. Once the A (s) matrix was inverted, it was stored in a disk 
p 

file. Storin_g the inverted A (s) matrix allows the model preprocessor 
p 

to retrieve it during subsequent runs for cases where only the plant 

configuration is changed, thereby avoiding the same inversion over and 

over. lmplenientat ion of this feature in the REDUCE program proved 

highly inefficient since more computer execution time was required to 

read the stored A -I (s) matrix than was required to do the inversion. 
. p 

Once the FORTRAN version of the preprocessor inverted the A (s) 
p 

matrix, it would read the config~ration data designating desired input-

output relationships and would then write a data file which contained 

the polynom!al coefficients of the P(s), P (s), F(s)P(s)," etc. transfer 
0 

function matrices. The synthesis program obtained these matrices by 

calling a special subroutine (Subroutine MODEL) which read the data file 

to define the desired transfer function matrix. 

The selection as to which preprocessor option is best can only be 

mad~ as later research develops the prototype design system into a more 

production-oriented system. As for the prototype used in this research, 

the FORTRAN option was implemented mainly due to the fact that it was 

more economical to use. The FORTRAN version was also used to study prob-

lems centered around rational polynomial matrix inversion. 

The logical structure of the FORTRAN model preprocessor and the 

synthesis program is basically the same. The following discussion on 

the program structure applies to both the model preprocessor and the 

synthesis program. Since the analysis program is already well docu-

mented (see Reference [58]) it wi 11 not be discussed here. 
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The synthesis program structure is divided into six levels. These 

levels, from highest to lowest, are named: 1) main level, 2) executive 

level, 3) general computations level, 4) special matrix operations lev-

el, 5) basic matrix arithmetic level, and 6) basic arithmetic and memory 

management level. Each level (except the main level) consists of a set 

of subprograms which perform operations at the specified level. In gen-

eral, two rules apply to the routines. Rule one is the routines in one 

level may only call routines in levels which are lower or it may call 

routines in the same level. No routines in one level may call higher 

level routines. The second rule is that no routine in one level may 

perform any operation that is available at a lower level. These rules 

make the overall 'program very flexible and easily modified. 

Polynomial coefficients are stored in contiguous extended precision 

words of memory ordered from lowest to highest order coefficient. An 

integer number is stored with each set of polynomial coefficients to 

specify the number of coefficients. Polynomial matrices are stored as 

three-dimensional arrays such that the first dimension refers to indi~ 

vidual coefficients, the second dimension refers to the rows of the ma-

trix, and the third dimension refers to the columns of the matrix. This 

scheme keeps the coefficients of any one polynomial together in contig-

uous storage locations. A two-dimensional, integer matrix is used to 

store values defining the number of coefficients for each polynomial of 

the matrix. Scalar polynomial coefficients are stored in one-dimensional 

arrays with a single integer variable defining the number of coefficients 

in the array. 

Storage for the coefficient arrays is allocated dynamically during 

program execution by the memory management systems. Dynamic array allo-



115 

cations allow the synthesis program to automatically adjust the size of 

coefficient arrays during execution to keep the amount of memory required 

at a minimum. The total memory available for a particular problem is set 

by the user before the program executes. The program user adjusts the 

size of an unlabeled common block in the main program (main level). The 

main program is comprised only of the necessary COMMON statements and a 

CALL statement which starts the synthesis executive program. By making 

the executive program a subroutine, only the main program has to be re

compiled when the total amount of available storage is changed. The 

executive subroutine needs never to be recompiled. 

Most coefficient arrays are allocated at the executive level. The 

executive program deter~ines the size requirements for the various co

efficient arrays and calls a special subprogram of the memory management 

system. The subprogram returns a suitable starting location for the 

array in blank common. When the executive makes calls to routines at 

lower levels, the starting memory address in common storage of any co

efficient array is passed as an argument. The receiving routine refers 

to the matrix as a three dimensional matrix. The following transaction 

Illustrates the process: 

SUBROUTINE CONTROL 

COMMON I I COMBUF(3000) 

ISTARTA = MEMMAN(IS*N*M) 



CALL DECOMP(COMBUF(ISARTA), IS,N,M ... 

END 

SUBROUTINE DECOMP(A, ISA,N,M, ... ) 

DIMENSION A(IS,N,M) 
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Subroutine CONTROL requests the starting location of an array for an nxm 

polynomial matrix which will contain polynomials with no greater than IS 

coefficients each. CONTROL then makes calls to various lower level 

routines as shown. The lower level routine can now easily refer to the 

individual polynomials in the matrix. 

The basic arithmetic level consists of routines which add, sub

tr~ct, multiply, divide, and compute the GCD of polynomials. The spe

cial addition/subtraction routine is also at this level. By keeping 

basic arithmetic of the same level as the memory management system, the 

memory management scheme can be modified without having to make coding 

changes at a higher level. As long as all higher level routines use the 

basic arithmetic level routines for any necessary polynomial operations, 

then any memory management scheme can be implemented. Since the basic 

arithmetic routines are at the same level as the memory management sys

tem, they will have to be changed as memory management changes are made. 

The executive level controls the sequence in which the controller 

is computed. The executive calls routines in the specific computation 

level to compute the controller in the following order: 
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1. Subroutine MODEL is called to define the transfer function ma-

trices and spectral density matrices needed for the design. 

2. The coprime decompositions of Equations (A.31 and (A.4) are 

computed. 

3. The matrix of Equation (A.12) is computed (but not factored). 
-;'\ '!c 

The computation is performed by first evaluating A1P then PA1. This· 

helps insure common factor cancelation between the A1 and P matrices. 

The results of the above evaluations are multiplied with Qt to obtain 
.. , .. .,1 .. 

the term A;'p"QtPA1 · The other term of the equation is evaluated in a 
·J: i': 

similar manner to obtain kA 1PsPsA 1. These two matrix terms are then 

added to form the final result. 

4. The matrix computed in Step 3 is spectrally factored to obtain 

f\.(s). 1\.-l (s) is computed in this step. 

5. The matrix of Equation (A. 13) is computed by first computing 

each of the following matrix terms: 
·k ;'\ 

AF G F A o m o 
·k * AL GOL A 

0 !'., 0 
_ .. 

AG A" 
u 

A[FP +L][FP +L]*A*. 
0 0 

These terms are then added togetheI' to form the required matrix. 

6. The spectral factorization is performed to obtain matrix Q(s). 

-1 
Q (s) is also computed in this step. 

]. Matrix r(s) of Equation (A.14) is c6mputed in a manner similar 

to that used in Step 4. 

8. Matrix H (s) is computed according to Equation (A.19). 
0 

9. The controller is computed according to Equation (A.18). 

Each specific computation routine makes extensive use of lower level 
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joutines to do the required scalar and matrix polynomial operations. The 

specific computation routines write all their intermediate results to the 

program output listing so that the synthesis process can be monitored by 

the user. Special routines are provided at the basic arithmetic level 

to output both rational polynomial matrices and polynomial matrices. 
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