9,049 research outputs found

    Casting Light on Dark Matter

    Full text link
    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.Comment: 16 pages, 13 figures, contribution to the proceedings of the LEAP 2011 Conferenc

    Global Optimization-Based Calibration Algorithm for a 2D Distributed Hydrologic-Hydrodynamic and Water Quality Model

    Full text link
    Hydrodynamic models with rain-on-the-grid capabilities are usually computationally expensive. This makes the use of automatic calibration algorithms hard to apply due to the large number of model runs. However, with the recent advances in parallel processing, computational resources, and increasing high-resolution climatologic and GIS data, high-resolution hydrodynamic models can be used for optimization-based calibration. This paper presents a global optimization-based algorithm to calibrate a fully distributed hydrologic-hydrodynamic and water quality model (HydroPol2D) using observed data (i.e., discharge, or pollutant concentration) as input. The algorithm can find a near-optimal set of parameters to explain observed gauged data. The modeling framework presented here, although applied in a poorly-gauged catchment, can be adapted for catchments with more detailed observations. We applied the algorithm in different cases of the V-Tilted Catchment, the Wooden-Board catchment, and in an existing urban catchment with heterogeneous data. The results of automatic calibration indicate NSE=0.99\mathrm{NSE} = 0.99 for the V-Tilted catchment, RMSE=830 mgL−1\mathrm{RMSE} = 830~\mathrm{mgL^{-1}} for salt concentration pollutographs (i.e., 8.3% of the event mean concentration), and NSE=0.89\mathrm{NSE} = 0.89 for the urban catchment case study. This paper also explores the issue of equifinality in modeling calibration (EqMC). Equifinality is defined as the set of different parameter combinations that can provide equally good or accepted results, within the physical parameter ranges. EqMC decreases with the number of events and increases with the choice of partially or nonproducing runoff ones. Furthermore, results indicate that providing more accurate parameter ranges based on a priori knowledge of the catchment is fundamental to reduce the chances of finding a set of parameters with equifinality.Comment: Preprint submitted to Journal of Hydrolog

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Quantum Measurement and the Aharonov-Bohm Effect with Superposed Magnetic Fluxes

    Full text link
    We consider the magnetic flux in a quantum mechanical superposition of two values and find that the Aharonov-Bohm effect interference pattern contains information about the nature of the superposition, allowing information about the state of the flux to be extracted without disturbance. The information is obtained without transfer of energy or momentum and by accumulated nonlocal interactions of the vector potential A⃗\vec{A} with many charged particles forming the interference pattern, rather than with a single particle. We suggest an experimental test using already experimentally realized superposed currents in a superconducting ring and discuss broader implications.Comment: 6 pages, 4 figures; Changes from version 3: corrected typo (not present in versions 1 and 2) in Eq. 8; Changes from version 2: shortened abstract; added refs and material in Section IV. The final publication is available at: http://link.springer.com/article/10.1007/s11128-013-0652-

    Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    Get PDF
    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m−2 and the global mean cloud-albedo aerosol indirect effect of between −0.008 and −0.056 W m−2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates

    The Clapper Rail as an Indicator Species of Estuarine Marsh Health

    Get PDF
    Clapper Rails (Rallus longirostris) can potentially serve as an indicator species of estuarinemarsh health because of their strong site ïŹ delity and predictable diet consisting predominantly of benthic organisms. These feeding habits increase the likelihood of individuals accumulating signiïŹ - cant amounts of contaminants associated with coastal sediments. Moreover, since Clapper Rails are threatened in most of their western range, additional study of the effects of potential toxins on these birds is essential to conservation programs for this species. Here we present techniques (DNA strand breakage, eggshell structure, and human-consumption risk) that can be used to quantify detrimental effects to Clapper Rails exposed to multiple contaminants in disturbed ecosystems as well as humans who may eat them. Adult birds collected near a site contaminated with polychlorinated biphenyls (PCBs) and metals in Brunswick, Georgia had a high degree of strand breakage, while those collected from a nearby reference area had no strand breakage. Although, results showed that eggshell integrity was compromised in eggs from the contaminated sites, these results were more diffuse, reemphasizing that multiple endpoints should be used in ecological assessments. This study also shows that techniques such as eggshell integrity on hatched eggs and DNA strand breakage in adults can be used as non-lethal mechanisms to monitor the population health of more threatened populations such as those in the western US. We also present results from human-based risk assessment for PCBs as a third toxicological endpoint, since these species are hunted and consumed by the public in the southeastern US. Using standard human-risk thresholds, we show a potential risk to hunters who consume Clapper Rails shot near the contaminated site from PCBs because of the additional lifetime cancer risk associated with that consumption
    • 

    corecore