118 research outputs found

    T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    Get PDF
    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al

    Vaccine candidates derived from a novel infectious cDNA clone of an American genotype dengue virus type 2

    Get PDF
    BACKGROUND: A dengue virus type 2 (DEN-2 Tonga/74) isolated from a 1974 epidemic was characterized by mild illness and belongs to the American genotype of DEN-2 viruses. To prepare a vaccine candidate, a previously described 30 nucleotide deletion (Δ30) in the 3' untranslated region of DEN-4 has been engineered into the DEN-2 isolate. METHODS: A full-length cDNA clone was generated from the DEN-2 virus and used to produce recombinant DEN-2 (rDEN-2) and rDEN2Δ30. Viruses were evaluated for replication in SCID mice transplanted with human hepatoma cells (SCID-HuH-7 mice), in mosquitoes, and in rhesus monkeys. Neutralizing antibody induction and protective efficacy were also assessed in rhesus monkeys. RESULTS: The rDEN2Δ30 virus was ten-fold reduced in replication in SCID-HuH-7 mice when compared to the parent virus. The rDEN-2 viruses were not infectious for Aedes mosquitoes, but both readily infected Toxorynchites mosquitoes. In rhesus monkeys, rDEN2Δ30 appeared to be slightly attenuated when compared to the parent virus as measured by duration and peak of viremia and neutralizing antibody induction. A derivative of rDEN2Δ30, designated rDEN2Δ30-4995, was generated by incorporation of a point mutation previously identified in the NS3 gene of DEN-4 and was found to be more attenuated than rDEN2Δ30 in SCID-HuH-7 mice. CONCLUSIONS: The rDEN2Δ30 and rDEN2Δ30-4995 viruses can be considered for evaluation in humans and for inclusion in a tetravalent dengue vaccine

    Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever

    Get PDF
    Background:Development of antiviral drugs that have broad-spectrum activity against a number of viral infections would be of significant benefit. Due to the evolution of resistance to currently licensed antiviral drugs, development of novel anti-influenza drugs is in progress, including Favipiravir (T-705), which is currently in human clinical trials. T-705 displays broad-spectrum in vitro activity against a number of viruses, including Rift Valley Fever virus (RVFV). RVF is an important neglected tropical disease that causes human, agricultural, and economic losses in endemic regions. RVF has the capacity to emerge in new locations and also presents a potential bioterrorism threat. In the current study, the in vivo efficacy of T-705 was evaluated in Wistar-Furth rats infected with the virulent ZH501 strain of RVFV by the aerosol route.Methodology/Principal Findings:Wistar-Furth rats are highly susceptible to a rapidly lethal disease after parenteral or inhalational exposure to the pathogenic ZH501 strain of RVFV. In the current study, two experiments were performed: a dose-determination study and a delayed-treatment study. In both experiments, all untreated control rats succumbed to disease. Out of 72 total rats infected with RVFV and treated with T-705, only 6 succumbed to disease. The remaining 66 rats (92%) survived lethal infection with no significant weight loss or fever. The 6 treated rats that succumbed survived significantly longer before succumbing to encephalitic disease.Conclusions/Significance:Currently, there are no licensed antiviral drugs for treating RVF. Here, T-705 showed remarkable efficacy in a highly lethal rat model of Rift Valley Fever, even when given up to 48 hours post-infection. This is the first study to show protection of rats infected with the pathogenic ZH501 strain of RVFV. Our data suggest that T-705 has potential to be a broad-spectrum antiviral drug. © 2014 Caroline et al

    Alterations in the Aedes aegypti Transcriptome during Infection with West Nile, Dengue and Yellow Fever Viruses

    Get PDF
    West Nile (WNV), dengue (DENV) and yellow fever (YFV) viruses are (re)emerging, mosquito-borne flaviviruses that cause human disease and mortality worldwide. Alterations in mosquito gene expression common and unique to individual flaviviral infections are poorly understood. Here, we present a microarray analysis of the Aedes aegypti transcriptome over time during infection with DENV, WNV or YFV. We identified 203 mosquito genes that were ≥5-fold differentially up-regulated (DUR) and 202 genes that were ≥10-fold differentially down-regulated (DDR) during infection with one of the three flaviviruses. Comparative analysis revealed that the expression profile of 20 DUR genes and 15 DDR genes was quite similar between the three flaviviruses on D1 of infection, indicating a potentially conserved transcriptomic signature of flaviviral infection. Bioinformatics analysis revealed changes in expression of genes from diverse cellular processes, including ion binding, transport, metabolic processes and peptidase activity. We also demonstrate that virally-regulated gene expression is tissue-specific. The overexpression of several virally down-regulated genes decreased WNV infection in mosquito cells and Aedes aegypti mosquitoes. Among these, a pupal cuticle protein was shown to bind WNV envelope protein, leading to inhibition of infection in vitro and the prevention of lethal WNV encephalitis in mice. This work provides an extensive list of targets for controlling flaviviral infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses

    Assessing Risk in Focal Arboviral Infections: Are We Missing the Big or Little Picture?

    Get PDF
    Focal arboviral infections affecting a subset of the overall population present an often overlooked set of challenges in the assessment and reporting of risk and the detection of spatial patterns. Our objective was to assess the variation in risk when using different at-risk populations and geographic scales for the calculation of incidence risk and the detection of geographic hot-spots of infection. We explored these variations using a pediatric arbovirus, La Crosse virus (LACV), as our model.Descriptive and cluster analyses were performed on probable and confirmed cases of LACV infections reported to the Tennessee Department of Health from 1997 to 2006, using three at-risk populations (the total population, the population 18 years and younger, and the population 15 years and younger) and at two geographic levels (county and census tract) to assess the variation in incidence risk and to investigate evidence of clustering using both global and local spatial statistics. We determined that the most appropriate at-risk population to calculate incidence risk and to assess the evidence of clustering was the population 15 years and younger. Based on our findings, the most appropriate geographical level to conduct spatial analyses and report incidence risk is the census tract level. The incidence risk in the population 15 years and younger at the county level ranged from 0 to 226.5 per 100,000 persons (median 41.5) in those counties reporting cases (n = 14) and at the census tract level it ranged from 50.9 to 673.9 per 100,000 persons (median 126.7) in those census tracts reporting cases (n = 51). To our knowledge, this is the highest reported incidence risk for this population at the county level for Tennessee and at the census tract level nationally.The results of this study indicate the possibility of missing disease clusters resulting from performing incidence risk investigations of focal diseases using inappropriate at-risk populations and/or at large geographic scales. Improved disease surveillance and health planning will result through the use of well defined at-risk populations and the use of appropriate geographic scales for the analysis and reporting of diseases. The finding of a high incidence risk of LACV infections in eastern Tennessee demonstrates that the vast majority of these infections continue to be under-diagnosed and/or underreported in this region. Persistent prevention and surveillance efforts will be required to reduce exposure to infectious vectors and to detect new cases of infection in this region. Application of this study's observations in future investigations will enhance the quantification of incidence risk and the identification of high-risk groups within the population

    The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics

    Get PDF
    Dengue/dengue hemorrhagic fever is the world's most widely spread mosquito-borne arboviral disease and threatens more than two-thirds of the world's population. Cases are mainly distributed in tropical and subtropical areas in accordance with vector habitats for Aedes aegypti and Ae. albopictus. However, the role of imported cases and favorable meteorological conditions has not yet been quantitatively assessed. This study verified the correlation between the occurrence of indigenous dengue and imported cases in the context of weather variables (temperature, rainfall, relative humidity, etc.) for different time lags in southern Taiwan. Our findings imply that imported cases have a role in igniting indigenous outbreaks, in non-endemics areas, when favorable weather conditions are present. This relationship becomes insignificant in the late phase of local dengue epidemics. Therefore, early detection and case management of imported cases through timely surveillance and rapid laboratory-diagnosis may avert large scale epidemics of dengue/dengue hemorrhagic fever. An early-warning surveillance system integrating meteorological data will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries

    Epidemiology of Dengue Virus in Iquitos, Peru 1999 to 2005: Interepidemic and Epidemic Patterns of Transmission

    Get PDF
    To develop prevention (including vaccines) and control programs for dengue fever, a significant mosquito-borne disease in the tropics, there is an urgent need for comprehensive long term field epidemiological studies. We report results from a study that monitored ∼2,400 school children and some adult family members for dengue infection at 6 month intervals from 1999 to 2005, in the Amazonian city of Iquitos, Peru. At enrollment, ∼80% of the participants had a previous infection with DENV serotypes 1 and 2 or both. During the first 15 months, about 3 new infections for every 100 participants were observed among the study participants. In 2001, DENV-3, a serotype not previously observed in the region, invaded Iquitos in a process characterized by 3 distinct periods: amplification over at least a 5–6 month period, replacement of previously circulating serotypes, and epidemic transmission when incidence peaked. Incidence patterns of new infections were geographically distinct from baseline prevalence rates prior to arrival of DENV-3, but closely mirrored them during the invasion. DENV transmission varied geographically corresponding to elevated mosquito densities. The invasion of a novel serotype is often characterized by 5–6 months of silent transmission before traditional surveillance programs detect the virus. This article sets the stage for subsequent publications on dengue epidemiology

    Isolates of Liao Ning Virus from Wild-Caught Mosquitoes in the Xinjiang Province of China in 2005

    Get PDF
    Liao ning virus (LNV) is related to Banna virus, a known human-pathogen present in south-east Asia. Both viruses belong to the genus Seadornavirus, family Reoviridae. LNV causes lethal haemorrhage in experimentally infected mice. Twenty seven isolates of LNV were made from mosquitoes collected in different locations within the Xinjiang province of north-western China during 2005. These mosquitoes were caught in the accommodation of human patients with febrile manifestations, or in animal barns where sheep represent the main livestock species. The regions where LNV was isolated are affected by seasonal encephalitis, but are free of Japanese encephalitis (JE). Genome segment 10 (Seg-10) (encoding cell-attachment and serotype-determining protein VP10) and Seg-12 (encoding non-structural protein VP12) were sequenced for multiple LNV isolates. Phylogenetic analyses showed a less homogenous Seg-10 gene pool, as compared to segment 12. However, all of these isolates appear to belong to LNV type-1. These data suggest a relatively recent introduction of LNV into Xinjiang province, with substitution rates for LNV Seg-10 and Seg-12, respectively, of 2.29×10−4 and 1.57×10−4 substitutions/nt/year. These substitution rates are similar to those estimated for other dsRNA viruses. Our data indicate that the history of LNV is characterized by a lack of demographic fluctuations. However, a decline in the LNV population in the late 1980s - early 1990s, was indicated by data for both Seg-10 and Seg-12. Data also suggest a beginning of an expansion in the late 1990s as inferred from Seg-12 skyline plot
    corecore