1,195 research outputs found

    Antegrade pressure measurement as a diagnostic tool in modern pediatric urology

    Get PDF
    The antegrade pressure measurement (APM) or perfusion pressure-flow test (Whitaker test) is a method of antegrade measurement of pressure in the upper urinary tract. In this study, we present the long-term follow-up results of APMs performed in our institution in the late 1980s and early 1990s to see whether the diagnostic decisions that were based on the outcomes of the test prove to be correct in the long term. We conducted a retrospective study by searching our hospital's electronic database. We found a total of 16 APMs performed between 1987 and 1995 (10 boys, six girls; mean age 61 months). In nine cases, action was undertaken immediately after the APM had been performed; in seven cases, this was a surgical procedure (re-implantation/re-calibration or pyeloplasty) after obstruction was demonstrated. In two cases (both postoperative after previous pyeloplasty), absence of obstruction was demonstrated and nephrostomy tubes were subsequently closed. In one case, this resulted in hydronephrosis that had to be treated with a new JJ stent. In all the seven cases in which no action was deemed necessary as a result of the outcome of the APM, long-term follow-up showed that intervention had indeed not been necessary. Although not often used anymore, the APM seems to be a safe and valuable diagnostic tool in the work up for possible urinary tract obstruction in children, especially in cases in which there is serious doubt concerning conservative watchful waitin

    Identification of A-colored Stars and Structure in the Halo of the Milky Way from SDSS Commissioning Data

    Get PDF
    A sample of 4208 objects with magnitude 15 < g* < 22 and colors of main sequence A stars has been selected from 370 square degrees of Sloan Digital Sky Survey (SDSS) commissioning observations. The data is from two long, narrow stripes, each with an opening angle of greater than 60 deg, at Galactic latitudes 36 < abs(b) < 63 on the celestial equator. An examination of the sample's distribution shows that these stars trace considerable substructure in the halo. Large overdensities of A-colored stars in the North at (l,b,R) = (350, 50, 46 kpc) and in the South at (157, -58, 33 kpc) and extending over tens of degrees are present in the halo of the Milky Way. Using photometry to separate the stars by surface gravity, both structures are shown to contain a sequence of low surface gravity stars consistent with identification as a blue horizontal branch (BHB). Both structures also contain a population of high surface gravity stars two magnitudes fainter than the BHB stars, consistent with their identification as blue stragglers (BSs). From the numbers of detected BHB stars, lower limits to the implied mass of the structures are 6x10^6 M_sun and 2x10^6 M_sun. The fact that two such large clumps have been detected in a survey of only 1% of the sky indicates that such structures are not uncommon in the halo. Simple spheroidal parameters are fit to a complete sample of the remaining unclumped BHB stars and yield (at r < 40 kpc) a fit to a halo distribution with flattening (c/a = 0.65+/-0.2) and a density falloff exponent of alpha = -3.2+/-0.3.Comment: AASTeX v5_0, 26 pages, 1 table, 20 figures, ApJ accepte

    Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey

    Get PDF
    We report the discovery of five quasars with redshifts of 4.67 - 5.27 and z'-band magnitudes of 19.5-20.7 M_B ~ -27. All were originally selected as distant quasar candidates in optical/near-infrared photometry from the Sloan Digital Sky Survey (SDSS), and most were confirmed as probable high-redshift quasars by supplementing the SDSS data with J and K measurements. The quasars possess strong, broad Lyman-alpha emission lines, with the characteristic sharp cutoff on the blue side produced by Lyman-alpha forest absorption. Three quasars contain strong, broad absorption features, and one of them exhibits very strong N V emission. The amount of absorption produced by the Lyman-alpha forest increases toward higher redshift, and that in the z=5.27 object (D_A ~ 0.7) is consistent with a smooth extrapolation of the absorption seen in lower redshift quasars. The high luminosity of these objects relative to most other known objects at z >~ 5 makes them potentially valuable as probes of early quasar properties and of the intervening intergalactic medium.Comment: 13 pages in LaTex format, two postscirpt figures. Submitted to the Astronomical Journa

    International Public Health Research Involving Interpreters: a Case Study from Bangladesh

    Get PDF
    Background: Cross-cultural and international research are important components of public health research, but the challenges of language barriers and working with interpreters are often overlooked, particularly in the case of qualitative research. Methods: A case-study approach was used to explore experiences of working with an interpreter in Bangladesh as part of a research project investigating women's experiences of emergency obstetric care. The case study: Data from the researcher's field notes provided evidence of experiences in working with an interpreter and show how the model of interviewing was adapted over time to give a more active role to the interpreter. The advantages of a more active role were increased rapport and "flow" in interviews. The disadvantages included reduced control from the researcher's perspective. Some tensions between the researcher and interpreter remained hard to overcome, irrespective of the model used. Independent transcription and translation of the interviews also raised questions around accuracy in translation. Conclusion: The issues examined in this case study have broader implications for public health research. Further work is needed in three areas: 1) developing effective relationships with interpreters; 2) the impact of the interpreter on the research process; and 3) the accuracy of the translation and level of analysis needed in any specific public health research. Finally, this paper highlights the importance to authors of reflecting on the potential impact of translation and interpretation on the research process when disseminating their research

    An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data

    Get PDF
    We present an algorithm to photometrically calibrate wide field optical imaging surveys, that simultaneously solves for the calibration parameters and relative stellar fluxes using overlapping observations. The algorithm decouples the problem of "relative" calibrations, from that of "absolute" calibrations; the absolute calibration is reduced to determining a few numbers for the entire survey. We pay special attention to the spatial structure of the calibration errors, allowing one to isolate particular error modes in downstream analyses. Applying this to the Sloan Digital Sky Survey imaging data, we achieve ~1% relative calibration errors across 8500 sq.deg. in griz; the errors are ~2% for the u band. These errors are dominated by unmodelled atmospheric variations at Apache Point Observatory. These calibrations, dubbed "ubercalibration", are now public with SDSS Data Release 6, and will be a part of subsequent SDSS data releases.Comment: 16 pages, 17 figures, matches version accepted in ApJ. These calibrations are available at http://www.sdss.org/dr

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data IV: Luminosity Function from the Fall Equatorial Stripe Sampl

    Get PDF
    This is the fourth paper in a series aimed at finding high-redshift quasars from five-color imaging data taken along the Celestial Equator by the SDSS. during its commissioning phase. In this paper, we use the color-selected sample of 39 luminous high-redshift quasars presented in Paper III to derive the evolution of the quasar luminosity function over the range of 3.6<z<5.0, and -27.5<M_1450<-25.5 (Omega=1, H_0=50 km s^-1 Mpc^-1). We use the selection function derived in Paper III to correct for sample incompleteness. The luminosity function is estimated using three different methods: (1) the 1/V_a estimator; (2) a maximum likelihood solution, assuming that the density of quasars depends exponentially on redshift and as a power law in luminosity and (3) Lynden-Bell's non-parametric C^- estimator. All three methods give consistent results. The luminous quasar density decreases by a factor of ~ 6 from z=3.5 to z=5.0, consistent with the decline seen from several previous optical surveys at z<4.5. The luminosity function follows psi(L) ~ L^{-2.5} for z~4 at the bright end, significantly flatter than the bright end luminosity function psi(L) \propto L^{-3.5} found in previous studies for z<3, suggesting that the shape of the quasar luminosity function evolves with redshift as well, and that the quasar evolution from z=2 to 5 cannot be described as pure luminosity evolution. Possible selection biases and the effect of dust extinction on the redshift evolution of the quasar density are also discussed.Comment: AJ accepted, with minor change

    SDSSJ103913.70+533029.7: A Super Star Cluster in the Outskirts of a Galaxy Merger

    Full text link
    We describe the serendipitous discovery in the spectroscopic data of the Sloan Digital Sky Survey of a star-like object, SDSSJ103913.70+533029.7, at a heliocentric radial velocity of +1012 km/s. Its proximity in position and velocity to the spiral galaxy NGC 3310 suggests an association with the galaxy. At this distance, SDSSJ103913.70+533029.7 has the luminosity of a super star cluster and a projected distance of 17 kpc from NGC 3310. Its spectroscopic and photometric properties imply a mass of > 10^6 solar masses and an age close to that of the tidal shells seen around NGC 3310, suggesting that it formed in the event which formed the shells.Comment: Accepted by AJ: 4 figures (1 color

    The RR Lyrae Distance Scale

    Get PDF
    We review seven methods of measuring the absolute magnitude M_V of RR Lyrae stars in light of the Hipparcos mission and other recent developments. We focus on identifying possible systematic errors and rank the methods by relative immunity to such errors. For the three most robust methods, statistical parallax, trigonometric parallax, and cluster kinematics, we find M_V (at [Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and theoretical models both yield a broad range of possible values (0.45-0.70 and 0.45-0.65) due to systematic uncertainties in the temperature scale and input physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but this may be due to a difference in the metallicity scales of the cluster giants and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67 +/- 0.13 and is potentially very robust, but at present is too new to be fully tested for systematics. If the three most robust methods are combined with Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at [Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose

    Prime Focus Spectrograph - Subaru's future -

    Full text link
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru's wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a wide-field metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 {\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki Takami, Editors, Proc. SPIE 8446 (2012)
    • 

    corecore