306 research outputs found

    Quantum Transport and Field Induced Insulating States in Bilayer Graphene pnp Junctions

    Full text link
    We perform transport measurements in high quality bilayer graphene pnp junctions with suspended top gates. At a magnetic field B=0, we demonstrate band gap opening by an applied perpendicular electric field, with an On/Off ratio up to 20,000 at 260mK. Within the band gap, the conductance decreases exponentially by 3 orders of magnitude with increasing electric field, and can be accounted for by variable range hopping with a gate-tunable density of states, effective mass, and localization length. At large B, we observe quantum Hall conductance with fractional values, which arise from equilibration of edge states between differentially-doped regions, and the presence of an insulating state at filling factor {\nu}=0. Our work underscores the importance of bilayer graphene for both fundamental interest and technological applications.Comment: 4 figures, to appear in Nano Lett. Minor typos correcte

    Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes

    Full text link
    Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in acids that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs

    Evaluating Surface Flux Results from CERES-FLASHFlux

    Get PDF
    The Fast Longwave and Shortwave Radiative Flux (FLASHFlux) data product was developed to provide a rapid release version of the Clouds and Earth's Radiant Energy System (CERES) results, which could be made available to the research and applications communities within one week of the satellite observations by exchanging some accuracy for speed of processing. Unlike standard CERES products, FLASHFlux does not maintain a long-term consistent record. Therefore the latest algorithm changes and input data can be incorporated into processing. FLASHFlux released Version3A (January 2013) and Version 3B (August 2014) which include the latest meteorological product from Global Modeling and Assimilation Office (GMAO), GEOS FP-IT (5.9.1), the latest spectral response functions and gains for the CERES instruments, and aerosol climatology based on the latest MATCH data. Version 3B included a slightly updated calibration and some changes to the surface albedo over snow/ice. Typically FLASHFlux does not reprocess earlier versions when a new version is released. The combined record of Time Interpolated Space Averaged (TISA) surface flux results from Versions3A and 3B for July 2012 to October 2015 have been compared to the ground-based measurements. The FLASHFlux results are also compared to two other CERES gridded products, SYN1deg and EBAF surface fluxes

    Fast Longwave and Shortwave Radiative Flux (FLASHFlux) Products from CERES and MODIS Measurements

    Get PDF
    The Clouds and the Earth s Radiant Energy Systems (CERES) project is currently producing world-class climatological data products derived from measurements taken aboard the Terra and Aqua spacecrafts (Wielicki et al., 1996). While of exceptional fidelity, these data products require a considerable amount of processing to assure quality and verify accuracy and precision. Obtaining such high quality assurance, however, means that the CERES data is typically released more than six months after the acquisition of the initial measurements. For climate studies, such delays are of little consequence, especially considering the improved quality of the released data products. There are, however, many uses for the CERES data products on a near real-time basis. These include: CERES instrument calibration and subsystem quality checks, CLOUDSAT operations, seasonal predictions, agricultural and ocean assimilations, support of field campaigns, and outreach programs such as S'Cool. The FLASHflux project was envisioned as a conduit whereby CERES data could be provided to the community within a week of the initial measurements, with the trade-off that some degree of fidelity would be exacted to gain speed. In this paper, we will report on some very encouraging initial results from the FLASHflux project in which we compared the FLASHflux instantaneous surface fluxes to the CERES surface-only flux algorithm data products

    Magnetoconductance Oscillations in High-Mobility Suspended Bilayer and Trilayer Graphene

    Full text link
    We report pronounced magnetoconductance oscillations observed on suspended bilayer and trilayer graphene devices with mobilities up to 270,000 cm2/Vs. For bilayer devices, we observe conductance minima at all integer filling factors nu between 0 and -8, as well as a small plateau at {\nu}=1/3. For trilayer devices, we observe features at nu=-1, -2, -3 and -4, and at {\nu}~0.5 that persist to 4.5K at B=8T. All of these features persist for all accessible values of Vg and B, and could suggest the onset of symmetry breaking of the first few Landau (LL) levels and fractional quantum Hall states.Comment: to appear in Phys. Rev. Let

    Explosive Nucleosynthesis: What we learned and what we still do not understand

    Full text link
    This review touches on historical aspects, going back to the early days of nuclear astrophysics, initiated by B2^2FH and Cameron, discusses (i) the required nuclear input from reaction rates and decay properties up to the nuclear equation of state, continues (ii) with the tools to perform nucleosynthesis calculations and (iii) early parametrized nucleosynthesis studies, before (iv) reliable stellar models became available for the late stages of stellar evolution. It passes then through (v) explosive environments from core-collapse supernovae to explosive events in binary systems (including type Ia supernovae and compact binary mergers), and finally (vi) discusses the role of all these nucleosynthesis production sites in the evolution of galaxies. The focus is put on the comparison of early ideas and present, very recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018

    Identical transitions in the strongly deformed Sr-99 and Sr-100

    Full text link
    The decay of the very neutron-rich nucleus Rb-100 has been studied by gamma-spectroscopy of on-line mass-separated samples. Schemes for beta-decay to Sr-100 and beta-n-decay to Sr-99 are presented. New sets of transitions in Sr-99 and Sr-100 with identical energies are observed. All identical bands so far observed in neutron-rich Sr isotopes obey a simple energy rule valid for even-even, odd-even and odd-odd bands.Comment: 31 pages, 7 figures, Phys. Rev. C, in prin
    • …
    corecore