18 research outputs found

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure

    Composite nucleons in scalar and vector mean-fields

    Get PDF
    We emphasize that the composite structure of the nucleon may play quite an important role in nuclear physics. It is shown that the momentum-dependent repulsive force of second order in the scalar field, which plays an important role in Dirac phenomenology, can be found in the quark-meson coupling (QMC) model, and that the properties of nuclear matter are well described through the quark-scalar density in a nucleon and a self-consistency condition for the scalar field. The difference between theories of point-like nucleons and composite ones may be seen in the change of the ω\omega-meson mass in nuclear matter if the composite nature of the nucleon suppresses contributions from nucleon-antinucleon pair creation.Comment: 10 page

    Measurement of the Generalized Polarizabilities of the Proton in Virtual Scattering at Q2=0.92 and 1.76 GeV2: I. Low Energy Expansion Analysis

    Full text link
    Virtual Compton Scattering is studied at the Thomas Jefferson National Accelerator Facility at low Center-of-Mass energies, below pion threshold. Following the Low Energy Theorem for the ep→epγ ep \to ep \gamma process, we obtain values for the two structure functions Pll-Ptt/epsilon and Plt at four-momentum transfer squared Q2=0.92 and 1.76 GeV2.Comment: 4 pages, 2 figures, to be submitted to PRL. Figs 1 and 2, lettering enlarge
    corecore